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ABSTRACT 

Shock induced demagnetization produced by strain induced magnetic ani­

sotropy is considered in single crystal and polycrystalline ferromagnetic 

material. A consistent application of equilibrium thermodynamics in conjunc­

tion with established tools of ferromagnetic domain theory is used to develop 

energy expressions, magnetization curves, and domain structure in the magnetic 

material behind the shock wave. This approach has not previously been used to 

describe the shock induced anisotropy effect. In particular, specific expres­

sions for the exchange energy and magnetic self energy are explicitly obtained. 

They are predicted to increase as the fourth root of the strain and are small 

compared to the induced anisotropy energy in the region of large elastic and 

plastic strain. A needle or sliver shaped domain structure oriented in the 

direction of shock propagation is expected to nucleate behind the shock front. 

These results follow from the domain theory analysis and have not previously 

been obtained. 

In polycrystalline material, the averaging procedure required to pre­

dict the magnetic behavior is critically analyzed. The importance of magnetic 

grain-grain interaction is pointed out and magnetization curves for the ex­

treme assumptions of interacting grains and independent grains are determined. 

The effect of porosity and finite strain is also considered. These results 

are compared with those obtained by Shaner and Royce (J. Appl. Phys. ]1, 492 

(1968)) for interacting grains and effects of finite strain. 

Experimental demagnetization curves are obtained for shocked poly­

crystalline yttrium iron garnet at about one-third and two-thirds the Hugoniot 

elastic limit of the material. The results support the independent grain 

theory. 

ii 



During this work a successful experimental technique was developed 

which, in conjunction with a gas gun used for impact studies, applies the 

required uniaxial strain field and magnetic field and measures the sub­

sequent shock induced demagnetization. 

iii 
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CHAPTER I 

INTRODUCTION 

Creation of an anisotropic ferromagnet by subjecting a ferromagnetic 

material to a planar shock wave produces the shock induced magnetic anisotropy 

effect. The resulting uniaxial strain establishes a magnetic anisotropy field 

which fundamentally affects the magnetic behavior of the material. A quanti-

tative understanding of this shock induced magnetic behavior is necessary 

before a complete description of the response of magnetic materials to dynamic 

loading can be determined. 

1.1 Background 

The interdependence of magnetic and elastic behavior of ferromagnetic 

material was first established by Joulel in 1842 when he observed the change 

in length of a ferromagnetic bar upon magnetization. The inverse effect 

(Villari effect) or the change in magnetization with applied tension was 

reported in 1865. 2 There followed a rash of discoveries of magnetostrictive 

effects and related inverse effects which were finally incorporated into a 

coherent theory with the advent of conventional magnetoelastic theory in the 

early 1930's. 3 Intensive research in the 1940's and 1950's established the 

foundations of domain theory.4 Finally, a consistent thermodynamic treatment 

of magnetoelastic interactions by Brown5 (1963) refined the conventional 

theory to its fairly sound foundation of the present day. 

The shock induced anisotropy effect is a specific form of the general 

piezomagnetic or inverse magnetostriction effect. Its contribution to the 



2 

shock induced demagnetization problem was established by Royce6 (1966) while 

investigating the magnetic response of nickel ferrite under shock loading ; 

Subsequent work by Royce7 and Shaner and Royce8 in the plastic region of 

yttrium iron garnet and Seay et a1. 9 in the elastic and plastic regions of 

manganese zinc ferrite confirmed this conclusion. The effect in single 

crystal and po1ycrysta1 ferrites has been considered theoretically by 

Barte1. 10 ,li Wayne, Samara, and Lefever12 have observed a form of this effect 

which occurs locally in porous ferromagnetic material subject to hydrostatic 

pressure. 

There has been continuing interest in this magnetic effect peculiar 

to th~ realm of shock wave physics. The interest has recently been increased 

by attempts to understand the magnetic response of natural and meteoritic 

material under dynamic loading. This understanding is necessary to be tonfi­

dent in using magnetic techniques for investigation of the history and origin 

of such materials. 

1.2. Objectives 

The work cited in the previous section represents a significant con­

tribution to the definition and understanding of the shock induced anisotropy 

effect. However, it is the belief of this author that the extension of this 

understanding to the prediction of the magnetic response of actual material 

subject to shock loading requires a firmer quantitative foundation than is 

now available. The intention of this work is to contribute theoretical and 

experimental groundwork toward this foundation. 

The objectives undertaken in this work are as fo11ows. The necessary 

thermodynamics for a systematic description of the induced anisotropic ferro­

magnet will be developed. The shock induced anisotropy effect in single 
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crystal ferromagnetic material will be considered by a consistent application 

of the established tools of domain theory. In particular, the contributions 

of the exchange energy and demagnetizing energy will be determined. The 

domain structure behind the shock wave will be deduced from this domain 

theoretical analysis. Following this, the shock induced anisotropy effect in 

polycrystalline ferromagnetic material will be considered. Integral in this 

consideration is a critical analysis of the averaging process required to 

predict the random behavior of the polycrystalline structure. The contribu­

tion due to finite strain, a serious question in the region of large elastic 

strain, will be determined. Finally, the effect of porosity on the macro­

scopic magnetic response of material subject to this effect will be addressed. 

Further objectives of this work are the design and implementation of 

an experimental technique capable of measuring the magnetic state of the 

shocked ferromagnetic material during the few tenths of a microsecond within 

which this state exists. With this method data is accumulated in the region 

of large elastic strain in yttrium iron garnet. Favorable magnetic properties 

of yttrium iron garnet provide a critical comparison of experiment with 

theory. 



CHAPTER II 

THERMODYNAMICS OF THE ANISOTROPIC FERROMAGNET 

The effect of propagating a one dimensional shock wave through a 

ferromagnetic material is to create a state of uniform uniaxial strain behind 

the shock wave. This allows use of the thermodynamics of rigid ferromagnets 5 

in this region. This thermodynamic state is maintained by the inertial char­

acteristics of the material and is difficult to obtain by means other than 

shock wave techniques. It will persist until perturbing waves subject the 

region to further change. The goal is to predict the magnetic behavior in the 

shocked region while it is still in a state of uniaxial strain. 

The intent of this chapter is to develop consistently the thermody­

namics necessary to describe an anisotropic ferromagnet5 and to obtain the 

magnetic work term along with the appropriate thermodynamic equilibrium and 

stability criteria. A complete phenomenological energy expression will be 

constructed. 

This chapter contains nothing that is not already in the literature. 

It represents a survey, from many sources, for a complete thermodynamic 

description of the shock induced anisotropy effect. Its content is not neces­

sary for an understanding of the remaining chapters. The various thermodynamic 

terms and expressions derived in this chapter and used throughout the text 

have been collected in Appendix I for easy reference. 

A thermodynamic approach through an energy expression rather than 

through direct consideration of the forces involved will be used for several 

4 
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reasons. First, a phenomenological approach relating the forces directly 

requires a stress hypothesis. Inherent in the stress formulation is a non­

uniqueness in that any second rank tensor with zero divergence can be added 

to the stress tensor without affecting the equations of motion or the boundary 

conditions. This is usually of little consequence. In magnetic material, 

however, there is an additional complication to the nonuniqueness. This arises 

in attempting to separate short range magnetic forces, which will contribute 

to the stress, from long range magnetic forces, which will contribute to the 

volume force. A magnetic pole formalism, an Amperian current formalism, or 

any of several others gives different separation 'of magnetic stresses and mag­

netic volume forces. 5 In a thermodynamic consideration, the energy expression 

is unique and these complicating problems are avoided. Second, when forces 

are considered directly stability is checked only with difficulty. In thermo­

dynamics stability emerges naturally and simply in the second variation of the 

energyexpression. 13 

2.1. Magnetic Work 

The magnetic work done on a magnetic system can be obtained by con­

sidering the work done by a source of emf and the related change in magnetic 

flux through Faraday's law. Alternately, one can obtain the same expression 

from Maxwell's equations by somewhat more laborious methods. The two are, of 

course, equivalent. The latter method will be used since this is the point at 

which most electromagnetic texts prematurely terminate. Also, this method 

more clearly shows the points at which deviation from complete generality 

occurs. 

The work expression 

1 J-+ -+ 1 J-+ -+ J-+ -+ oW = 4~ H·oS dV + 4~ E·oD dV + J·Eot dV ( 2.1) 
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is obtained directly from Maxwell's equations. 14 Gaussian units are used and 
-+ -+ -+ -+ -+ 
H, B, E, 0, and J are the usual field quantities of electromagnetic 

theory. This expression assumes only that current changes are sufficiently 

quasistatic so that negligible energy is lost from the system by radiation. 

Nothing is assumed about linearity, reversibility, etc. in the magnetic mate-

rial. The three terms are, respectively, the magnetic work, the electric work, 

and the work done in creating Joule heat by the true currents in the system. 

If the ferromagnet is nonconductive and incapable of storing electric energy, 

then only the first term 

(2.2) 

is important. 

The work done on the ferromagnet is stored in various forms of energy 

or dissipated in irreversible processes. The work expression in this form 

does not show this partitioning. To proceed further, the magnetic field inten­

sity will be separated into two fields, 

This is possible through a theorem due to Helmholtz. 15 

is the particular solution of the equation 

= 4n J 
c 

-+ 

(2.3) 

-+ 
He is solenoidal and 

and Hd is irrotational and is the particular solution of the equation 

-+-+ -+-+ 
v.Hd = -41Tv·M. 

-+ 
In other words, He has as sources current carrying conductors such as would 
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be used to magnetize the magnetic material and will hereafter be called the 
-+ 

external field. Hd has as sources surface and volume magnetic poles and 

will be called the demagnetizing or dipolar field. It should be remembered 

that an entirely equivalent partitioning can be done with the magnetic induc-
-+ 

tion B. The development would then evolve around the concept of free 

currents and Amperian currents. Although either method is acceptable, the 

first is commonly used since it allows greater mathematical simplicity and 

some physical insight depending on one1s prejudices on magnetic pole concepts. 

With this separation of the magnetic field intensity and with 

-+ -+ -+ 
oB = oH + 4~oM, 

Equation (2.2) becomes 

-+ 

In the last term, Hd is irrotational and can be written as the gradient of 

a scalar potential. ~m' Integration by parts produces two terms. One con-
-+-+ 

tains V.He and is, therefore, zero and the other contains the total 
-+ 

divergence of ~mHe and, therefore, transforms to a surface integral. 

Assuming the system is localized so that r~m and r2He are regular at infin­

ity demands that the integrand diminishes sufficiently fast so that the 

surface integral must vanish. The other terms can be identified. The second 

term is the work done in changing the external field energy and does not 

depend on the magnetic material. This term will be excluded from thermody­

namic consideration of the ferromagnet. It is entirely a matter of bookkeeping 

and does not create any problems. 16 The third term is the magnetostatic 

"self energy" of the ferromagnet. It represents the energy required .to 
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construct the distribution of magnetic dipoles in the ferromagnet against the 

dipole-dipole, "action at a distance" forces. This term differs from the 

dipole-dipole energy only by the volume integral of a term which depends on 

local conditions in the magnetic material and may be regarded as an energy 

density.5 The first term is either the work done in storing energy in local 

form (expressible as a volume integral of an energy density) or the work lost 

in irreversible processes. 

The final magnetic work is 

2 

oW = J "Ho<5M dV + <5 J :~ dV. (2.4) 

Using two well known theorems from magnetostatics,17 

and 

the following useful forms for the magnetic work can be obtained. 

J-+ -+ 1 J-+ -+ oW = Ho<5M dV - 2 <5 HdoM dV (2.5) 

or 

(2.6) 

The latter is the form obtained directly from a consideration of Faraday's law 

relating the emf to the flux change. 5 
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2.2. Thermodynamic Laws 

The combined first and second law of thermodynamics states that 

au < T05 +JH ooM dV - e 

in a natural process. 13 For a ferromagnet constrained to 5 = 50 and 
+ + 
M = MO' this is 

oU < o. 

The internal energy can only decrease. This law implies that a virtual varia­

tion of the energy with respect to internal coordinates must be zero 

(thermodynamic equilibrium) and that this energy be already as small as 

possible (thermodynamic stability). 

The constraint on the magnetization is difficult to realize experi-
+ 

mentally. The controllable parameter is the external magnetic field, He. 

The usual thermodynamic technique is to perform an appropriate Legendre trans­

formation to an energy function with the controllable parameters as independent 

variables. 13 The energy function to be used will be 

and will be referred to simply as the energy. 

With the combined first and second law, this becomes 

oE < re5 - JMooHe dV. 

+ + 
For a ferromagnet constrained to 5 = 50 and He = HeO ' 

oE < 0, 
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and the thermodynamic equilibrium and stability criteria in terms of this 

energy are evident. 

2.3. The Local Energy 

It is the intent of this development to use the energy 

(2.7) 

along with the thermodynamic equilibrium and stability criteria to predict 

equilibrium states for a rigid anisotropic ferromagnet. To do this, an 

explicit expression for U in terms of pertinent internal coordinates must 

be obtained. U can be written 

(2.8) 

where ED is either of the previously derived self energy expressions in 

Equation (2.4) or Equation (2.5). The remaining energy depends only on local 

conditions and can be written as the volume integral of an energy density. 

It is this term that is now of concern. 

The method used to obtain this local energy expression is to rely on 

physics and microscopic models of the magnetic material to guide in the selec­

tion of mathematical forms and independent variables for the local energy. 

Phenomenological methods such as convenient expansions and symmetry require­

ments are then used to deduce precise forms for the energy expression. 5 

The dominant local energies in a ferromagnet have been classified as 

the exchange energy, the magnetocrystalline anisotropy energy, the magneto­

elastic energy, and the elastic energy.4 Each will be considered in order. 

The exchange energy has a purely quantum mechanical origin. It can 

be traced to the requirement of anti symmetry of the electronic state of the 
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magnetic ions under interchange of any two electrons. 18 In considering the 

interaction of any two magnetic ions, the anti symmetry requirement produces a 

splitting of energy levels making parallel and antiparallel spin alignment 

energetically separate. In a magnetic material at normal temperatures, only 

the lower lying energy states will be abundantly populated so the complete 

Hamiltonian may be replaced by an lIeffective spin Hamiltonian ll which has as 

its energy eigenvalues these several low lying states. 19 Between any two mag­

netic ions, this effective spin Hamiltonian can be written as 

Rt s = 
-+ -+ 

-2J .. S.·S .. 
lJ 1 J 

J ij is the exchange integral which determines the splitting of the low lying 
20 states. If J ij is a positive quantity, parallel spin is a lower energy 

state and ferromagnetism results. For J.. negative, antiparallel spin is a 
lJ 

lower energy state and antiferromagnetism results. The Hamiltonian for the 

entire crystal is 

-+ -+ 
J .. S.·S .. 
lJ 1 J 

This exchange energy gives rise to a very strong but short range interaction 

causing a cooperative alignment of magnetic dipoles and hence a spontaneous 

macroscopic magnetization in the material. The magnitude of this magnetiza­

tion has been found, with few exceptions, to be isotroPic2l and to depend 

mainly on the temperature22 and to some extent on the pressure in the medium. 23 

The small pressure dependence is considered in Section 4.5 To make an 

adequate selection of thermodynamic variables upon which the macroscopic 

expression for the exchange energy will depend, one can look to the result of 

a simple model. The following model will suggest that the gradients of the 

components of the magnetization or, alternatively, the gradients of the 
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direction cosines will be the proper thermodynamic variables. 22 Consider a 

simple cubic ferromagnetic material in which the exchange integral is iso-

tropic. 

Ws 
\' -+ -+ 

= -2JL. S.·5. 
ij 1 J 

If the spin directions change gradually so that adjacent spins differ by 

small angles, the quantum spin operators may be replaced by classical angular 

momentum vectors. 

E = -2Js2 L 
ij 

where a· is a unit vector in the direction of spin j. 
J 

-+ -+ 
a· • a . = COScp •• 

1 J 1 J 

may be expanded giving 

2\' 1 -+ ++2 
~ -2JS L.. (1 - ¥r;jlJa) ), 

ij 

-+ -+ 
where r .. 

lJ 
is a vector between magnetic ions having spin S. 

1 

-+ 
and S. 

J 
and 

a. is extended to a continuous function of position. If only nearest neigh-
1 

bor interactions are assumed and the sum is extended over six nearest 

neighbors, 
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Other terms in the sum are zero because of cubic symmetry. Dropping the 

constant term and allowing N magnetic atoms per unit volume, the energy 

density becomes 

This suggests that in more general cases the functional dependence of the 

exchange energy will be 

In ferrimagnetic materials, which include spinel structures such as nickel 

ferrite and manganese zinc ferrite and garnet structures such as yttrium iron 

garnet, this exchange phenomenon becomes somewhat more complicated. The com­

plication arises from the existence of diamagnetic cations regularly dispersed 

throughout the lattice. The exchange interaction between magnetic anions is 

coupled through these diamagnetic cations. Due to the large separation of the 

magnetic ions, there is smaller overlap of state functions and the exchange 

integral is negative. This type of exchange exhibited in ferrimagnetic mate-

rials is called superexchange and results in an antiferromagnetic alignment 

of electron spins. 24 It is found, however, that, as in the ferromagnetic 

case, the total Hamiltonian can again be conveniently replaced by an effec­

tive spin Hamiltonian. But, each different magnetic sublattice must be 

treated separately. We may still expect that a macroscopic expression for 

the exchange energy will be functionally dependent on the magnetization 

gradients. 

It is observed in ferromagnetic materials that under zero applied 

field magnetic domains lie along preferred crystal directions. 25 Work must 

1 
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be done on the system to rotate magnetic domains out of these directions. The 

local energy term associated with this interaction has been named the magneto-

crystalline anisotropy energy. It has been observed that this energy term 

does not affect the magnitude of the saturation magnetization and depends only 

on the direction of the saturation magnetization relative to the local crys­

tallographic axis. 26 This is a consequence of the fact that the exchange 

energy is much larger than the anisotropy energy and depends on the inner 

product of spin operators which are isotropic. Microscopically, the dominant 

contributing interaction to this energy is through single ion interaction with 

the crystal lattice. 26 The spin-orbit coupling prefers a colinear alignment 

of electron spin and orbital angular momentum while the orbital charge cloud 

adjusts itself in the crystal field to minimize electrostatic energy. Thus, 

the spin magnetic moment sees the crystal lattice through the spin orbit 

coupling. 

The magnetoelastic energy has the same origin as the magnetocrystal-

line anisotropy energy. It is a consequence of the fact that the anisotropy 

energy is dependent on the lattice dimensions. To distort the crystal lat­

tice in any way may change the anisotropy energy. This energy deviation from 

some reference lattice spacing is separated out as the magnetoelastic energy.4 

To reemphasize, the purpose of the previous physical discussion of 

the microscopic origins of the various energy terms was to guide in the selec-

tion of an adequate set of thermodynamic variables. The energy will then be 

a function of these variables. It was concluded that the gradient of the mag-

netization is a reasonable choice for the continuum dependence of the exchange 

energy. The anisotropy energy depended on the orientation of the elemental 

magnetic moment within the unit cell. Hence, the magnetization vector is the 

logical variable. For the elastic strain, the deformation gradients will be 
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selected. The functional dependence of the local energy density is 

(
ax. aa.) ( 1 1 

LOC aa.' ai' aa. ' 
J J 

(2.9) 

where xi are the space or Eulerian coordinates and aj are the material or 

Lagrangian coordinates. 27 It should be noted that in a purely phenomeno1ogi-

cal formulation higher order derivatives of xi 

included. 

and a. 
1 

2.4. Phenomenological Expression 

should properly be 

A phenomenological expansion of the energy in a Taylor series at this 

point would be premature. The problem is that (LOC cannot be an arbitrary 

function of the chosen variables but must satisfy the physically obvious in-

variance of a rigid rotation of the mass element dm. This would restrict 

the form of the property tensors obtained from the Taylor expansion. To cir­

cumvent this problem, the functional dependence of (LOC will be recast in 

terms of new variables under which (LOC can be an arbitrary function. 28 

This will be accomplished with a theorem due to cauchy.29 
+ + 

Theorem.--Any function, f(V1, ... , Vn), invariant under a rigid 
+ + 

rotation of the system of vectors, V1, ... , Vn, can be expressed as a 
+ + 

function of the various quantities V ·V 
a 13 (a, 13 same or different) or 

+ + + 
V ,VQxV (a,S, and y different). 

a i.J y 

(LOC is a function of seven vectors. 

( _ ( (at: a-; a-; + a~ a~ a~) 
LOC - LOC aa' aa' aa' a, aa' aa' aa 1 2 3 1 2 3 

A sufficient choice of independent variables from Cauchy's theorem gives the 

functional dependence 



where 

is the finite strain tensor, 

and 

* a· 
1 

G •• 
lJ 

16 

G .. ) 
lJ 

(2.10) 

(2.11) 

(2.12) 

These thermodynamic variables are not the only ones allowed by Cauchy's theo­

rem but are the ones usually selected. (See Brown5 for a more fundamental 

set. ) 

In terms of these variables, (LOC is arbitrary. A phenomenological 

expansion in the usual manner yields 30 

+ ... 

where 

** 1 **** = K. ·a·a. + -21 K. ·kl a .a .aka l + ... , 
lJ 1 J . lJ 1 J 
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+ ..• ., 

and 

The various phenomenological constants relate to physical properties and have 

been accordingly named. The following catalogues those material properties. 

K .. , K. 'kl various order anisotropy constants 
lJ lJ 

8;j(S) related to thermal strains 

bijkl first order magnetostrictive constants 

bijklmn Becker-Doring constants 

Cijkl adiabatic elastic moduli 

B. 'kl second order ME constants lJ mn 
C third order elastic moduli i jklmn 
A •• 
lJ 

exchange constants 

Aijkl exchange striction constants 

The number of independent elements in the property tensors is reduced 

by invoking symmetry requirements. They are thermodynamic symmetry which 

equates certain derivatives of the energy by interchanging the order of dif­

ferentiation, crystal symmetry which is determined by operators of the crystal 

class of interest, and magnetic symmetry which is determined by the particular 

magnetic point group. The expression for cubic symmetry30 (which includes 

YIG), correct to second order in magnetoelastic terms and third order in 

mechanical terms, is 
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(2.13) 

Keeping terms to lowest order, although not entirely consistently, one 

obtains the original expression of Becker and Doring3 from conventional mag-

netoelastic theory plus the exchange energy. 
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(2.14) 

where bl .= bll , b2 = b44 , and A = 2TIA/M~. 

There is a reason for developing the energy expression through a 

finite strain formalism. The conventional magnetoelastic energy expression, 

Equation (2.14), was obtained by adding the energy of a magnetic rigid solid 

to the energy of a nonmagnetic elastic solid and then superposing an interac-

tion term to describe the magnetoelastic effect. It has been pointed out that 

this expression does not contain sufficient terms to properly account for the 

energy to the order of strain assumed. 5 The success of the conventional mag­

netoelastic expression can be attributed to the extremely low strains (~lO-5) 

existing in usual magnetostrictive phenomenon. One worries whether it will be 

sufficient to describe the behavior for the quite high strains (~lO-2) which 

prevail in the present inverse magnetostrictive effect. Although conventional 

magnetoelastic theory will be used in the subsequent chapter, the effect of 

finite strain will be seriously considered in the appendix. 

In summary, a complete energy expression for an anisotropic ferromag­

net has been obtained. 

(2.15) 

With this expression and thermodynamic equilibrium and stability criteria, 

magnetic equilibrium properties can, in principle, be predicted. 



CHAPTER III 

APPLICATION TO THE SHOCK INDUCED ANISOTROPY EFFECT 

Passage of a shock wave through an infinite half space of ferromag­

netic material creates, behind the shock, an infinite slab of ferromagnetic 

material in a state of uniaxial magnetic anisotropy normal to the plane of the 

slab. An external magnetic field is applied along a direction in the plane of 

the slab and, hence, orthogonal to the axis of uniaxial strain as seen in 

Figure 3.1. This chapter will utilize the thermodynamic tools developed in 

the preceding chapter to predict the magnetic behavior of a ferromagnet sub­

ject to this unique effect. 

To proceed from the given energy expression to the final prediction of 

a magnetization curve in a given magnetic problem requires considerable effort 

and has been the subject of much theoretical investigation for many years. 

There have been basically two theoretical approaches to the problem. The more 

-I 

Fig. 3.1.--Shock created anisotropic ferromagnet. 

20 
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contemporary theory is referred to as micromagnetism. 31 It assaults the 

energy minimization problem through calculus of variation techniques. This 

theory is more general; capable, in principle, of predicting domain walls, 

hysteresis, Barkhausen jumps, and other characteristic ferromagnetic proper­

ties. Its usefulness, however, is limited by the extreme complexity of the 

mathematics involved and little progress has been made except in the simplest 

geometries. 

The other approach is domain theory.4,32 It has enjoyed wider accept­

ance due to its ability to provide useful predictions in practical magnetic 

problems. Domain theory avoids the difficult mathematics brought about by the 

calculus of variation methods. This is accomplished by postulating the pres­

ence of domain walls in the material and considering the exchange energy as 

localized in these walls. Success of this theory rests on the ingenuity and 

experience of the theoretician since he must determine by extratheoretical 

consideration the domain goemetry which will create the lowest energy. 

This chapter will proceed by considering the shock induced anisotropy 

effect in single crystal material. The problem will be analyzed with estab­

lished tools of domain theory and by these methods will be carried to its 

logical conclusion. The next step toward predicting the magnetic behavior in 

real material is the consideration of a theoretically dense polycrystal with 

random texture. This problem is explored and the averaging procedures relating 

single crystal behavior to polycrystal behavior are defined. Following this 

will be a brief review of the success of micromagnetic theory in exploring 

the anisotropy effect. In the last section the perturbing problem of porosity, 

present in all natural material, is considered. 

I 
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3.1. Domain Theoretical Calculation (Single Crystal) 

Consistent with domain theory, the volume integral in the energy ex­

pression for the anisotropic ferromagnet will be ignored. Instead, the total 

energy sufficient for predicting magnetic equilibrium states will be written. 

where each term refers to an energy density. The first term is the exchange 

energy while the second is the crystalline and magnetoelastic anisotropy 

energy. (' 1-+-+ 
td = - 2 Hd·M is the demagnetizing energy. 

-+ -+ £ = -H.M is the H e 

additional term included by the Legendre transformation and is just the inter­

action energy of the ferromagnet with the external magnetic field. It will be 

necessary to obtain each term for the problem of interest. 

The total anisotropy energy from conventional magnetoelastic theory is 

-+ 
Uniaxial strain along a line colinear with the unit vector n can be written 

in the tensor form 

e .. = en.n. 
lJ 1 J 

where e = (po/p) - 1 is the extension27 along the direction of uniaxial 
-+ 

strain. n is arbitrarily oriented with respect to the crystal axis. In the 

present work, interest lies in shock induced anisotropy. In shock wave 

studies, strains in the large elastic and plastic regions are obtained. Thus, 

for many magnetic materials, the crystalline anisotropy energy is 10 to 30 

times smaller than the induced anisotropy energy in this strain region. 
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Therefore, th.e crysta 11 i ne ani sotropy ene.rgy wi 11 be .i gnored. The ani sotropy 

energy of interest becomes 

(3.1) 

To proceed with the domain theory analysis of the shock induced ani­

sotropy effect, two single crystal problems will be treated concurrently. 

These will be called the <100> problem and the <111> problem. The <100> 

problem corresponds to a state of uniaxial strain along a <100> axis with a 

perpendicular applied field. The <111> problem corresponds to a state of 

uniaxial strain along a <111> axis with a perpendicular applied field. These 

two fundamental problems have their analogs in the thermodynamic inverse of 

this effect. They are magnetostriction along the <100> and <111> axes. 4 

The magnetoelastic constants, bl and b2, will be found to relate in a 

similar way to the magnetostriction constants, A100 and Alll' 

In the spirit of domain theory, models for the domain structure must 

be postulated. Energies corresponding to each model are then obtained and 

compared. From this, conclusions are drawn as to the most probable domain 

structure. Figure 3.2 shows the domain structure models which will be con­

sidered. Domain walls normal to the strain axis are not expected. This is 

because the variation in the magnetization direction through the domain wall 
++ ++ 

cannot be made without allowing v·M to deviate from zero. v·M f 0 in 

the domain wall implies magnetic volume poles in the wall and, hence, a high 

demagnetizing energy. This would be energetically unfavorable. Domains of 

closure are not expected due to the high induced anisotropy energy. 

I 
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3.1.1. Induced Ani sotropy Ene.rgy 

The induced anisotropy energies for the <100> problem and the <111 > 

problem will be obtained in this section. The energy will be obtained within 

domains and within the walls through which the transition between adjacent 

domains is made. This will be done for walls of the form shown in Figure 

3.2(a) and Figure 3.2(b). 

Consider first the <100> problem and the domain walls in Figure 

3.2(a) . Transform Equation (3.1) to polar coordinates using 

a1 = sinecos~, a2 = sinesin~, and a3 = cose. 

The induced anisotropy energy in a domain is easily obtained. 

-+ 
To obtain the induced anisotropy energy in the wall, the variation in M 

-+-+ 
through the wall must be considered. The requirement that v·M = 0 through 

the wall is equivalent to demanding that e be constant through the wall . 

The transition between adjacent domains then proceeds by a rotation of ~ 

from 0 to n. The energy in the wall is 

A slightly more difficult analysis gives for the <111> problem 

and 

Since the form of the energies is the same for the <100> problem and the 

<111> problem, we will write 
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Model for plate-like domain structure perpendicular to 
the applied field 
Model for plate-like domain structure parallel to the 
applied field 
Model for needle shaped domain structure oriented along 
axis of uniaxial strain. Polar angles define direction 
of magnetization during transition through domain wall. 
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(3.2) 

and 

(3.3) 

where b = b1 or b2 for the <100> problem or the <111> problem, 

respectively. 

Consider the domain configuration in Figure 3.2(b). Again the energy 

in the domain is 

The transition through the wall proceeds in the (x,z) plane by varying ~ 

continuously from -6 to 6. The energy in the wall is 

r be sin2~, 
t. me = '" -6 ~ ~ ~ 6. (3.4) 

Equation (3.2), Equation (3.3), and Equation (3.4) are the primary equations 

derived in this section. 

3.1.2. Exchange Energy 

Within the concepts of domain theory, the exchange energy is believed 

to reside only in the domain walls or transition regions between adjacent do-

mains. The usual method for obtaining this domain wall energy is through a 

Landau-Lifshitz domain wall calculation. 33 This has been fully developed in 

the literature22 ,32 and will be described only briefly here. The method con­

sists of writing a one dimensional integral expression for the energy in the 

transition region between domains. The terms which contribute to the wall 

energy are the exchange energy and the excess crystalline or magnetoelastic 

anisotropy energy incurred by the transition through the wall. It is assumed 



27 

-+--+-
that v·M = 0 (s = constant) holds through the wall. This one dimension-

al integral energy expression is minimized by variational calculus. The 

result predicts that at all points within the wall the exchange energy is 

equal to the excess anisotropy energy. It is found that the wall energy per 

unit area is given by 

<1>2 

aw = 21A sins J I (r"me(domain) r" )tl d'" Co - t. me "', (3.5) 

<1>1 

The crystal anisotropy energy has not been considered. A is again the ex­

change constant and <1>1 and <1>2 are the azimuthal orientation of the mag­

netization in the adjacent domains separated by the wall. 

In this section, the domain wall energies in Figure 3.2(a) and Figure 

3.2(b) will be obtained. They will be called a! and a~, respectively. For 

Figure 3.2(a), using Equation (3.2) and Equation (3.3) with Equation (3.5) 

gives 

or 

1T 

a! = 2/Albel s;n
2

e J sin<jld<jl 

o 

(3.6) 

For Figure 3.2(b), using Equation (3.2) and Equation (3.4) with Equa­

tion (3.5) gives 
S 

a~ = 2v'Albel J (sin2s - sin2~;)1/2 d~. 
-8 

Making the substitution 

sin x = sinssin~ = a sin~ 



and using the identity 

one obtains 

TT/2 

a~ = 4/Albel(a2 - l)J 
o 

This is 
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(1 
o 

a~ = 4/Albel((a2 - 1) K(a, TT/2) + E(a, TT/2» 

where a = sine and K and E are complete elliptic integrals of the 

first and second kind. 

a! and a~ are compared in Figure 3.3. It is seen that the domain 

model considered in Figure 3.2(b) yields a slightly lower energy. In actual 

crystalline material, imperfections such as dislocation, impurity, etc. can 

significantly alter the domain wall energy. For this reason, it is believed 

that the slight energy difference does not justify the prediction of the do­

main structure in Figure 3.2(b) over that in Figure 3.2(a). From this, one 

may conclude that domain theory suggests a needle or sliver shaped domain 

structure oriented along the axis of uniaxial strain will nucleate behind the 

shock front. A model for this structure is shown in Figure 3.2(c). 

Due to the much simpler form of Equation (3.6), the approximation 

will be made. An expression for the effective exchange energy density is 

given by 
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or 

r - Sl.Albel sin2e 
c'ex - 0 

where 0 is the dimension of a domain as shown in Figure 3.2(c). 

l.0 

O.S 

0.6 

~ 
!!. 0.4 
'O~ 

s 
Ow 

0.2 

O.O+-----------r------~ 

Fig. 3.3.--Domain wall energy as a function of e. 
corresponds to the wall geometry in Fig. 3.2(a); o~ 

corresponds to the wall geometry in Fig. 3.2(b). 
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3.1.3. Demagnetizing Energy 

The demagnetizing energy can be obtained by solving the magnetostatic 

boundary value problem for the magnetic surface pole distribution on two sur­

faces separated a distance L as is indicated in Figure 3.2(c). The solution 

requires only a slight variation on a problem already solved by Kittel. 4 Only 

the result will be reported here. It is approximately given by 

2 
OMs . 2 

td = 1.1 --L-- Sln e. 

The approximation results from terminating an infinite series. Again L is 

the slab thickness, 0 is the domain dimension, and Ms is the saturation 

magnetization. 

3.1.4. Total Energy 

From the results of Sections 3.1.1,3.1.2, and 3.1.3, the total ther-

modynamic energy for the ferromagnetic material behind the shock front can be 

explicitly written. The total energy is 

2 

((D,e) = -MsHe cose + be sin2e + 1.1 O:s sin2e + 8/A6bel sin2e. (3.7) 

Equilibrium thermodynamics predicts that the energy expression, 

((O,e), will be a minimum with respect to a variation of the internal coordi­

nates, 0 and e. Consider the domain width parameter first. Minimizing 

with respect to 0 gives 

8/A~bel sin2e = o. 
D 

This yields an expression for the domain width. 
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o = (8L/Alb~I)1/2 
1.1 Ms 

This can be substituted into Equation (3.7) giving 

or 

where 

_ [8.8M~IADbT]1/2 
y - 2 L • 

The last term in Equation (3.8) will be called the equilibrium exchange and 

demagnetizing energy. 

At this point a discussion of the results obtained so far is warranted. 

An estimate of the exchange constant can be obtained from molecular field 

theory. 22 This is 

where k is Boltzmann's constant, Tc is the Curie or N~el temperature, z 

is the number of nearest neighbors, and a is the lattice constant. This 

gives A = 3 x 10-7 erg/cm in YIG. At a strain of -.01 in YIG which 

corresponds to a shock pressure of about 25 kilobars, the predicted domain 

width is approximately 20 ~ron. This is in agreement with other work. ll 

The equilibrium exchange and demagnetizing energy in Equation (3.8) is ob­

served to increase as the fourth root of the strain while the induced anisotropy 
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energy increases linearly with the strain. This suggests that the equilibrium 

exchange and demagnetizing energy is about 2% of the induced anisotropy 

energy. This justifies ignoring the equilibrium exchange and demagnetizing 

energy in predicting magnetic behavior in the region of large elastic and 

plastic strain in YIG as was done by Royce7 and Bartel. 10 It is realized that 

this statement need not hold true for all materials. 

From the total thermodynamic energy, Equation (3.8), the equilibrium 

magnetization curve can be obtained. Thermodynamic equilibrium demands that 

dr dB = O. 

This has two solutions; 

sine = 0 

and, ignoring exchange and dipolar energy, 

Thermodynamic stability requires that 

at the equilibrium solution. For the solution sine = 0, this implies that 

2be + H M > O. e s 

Under shock induced anisotropy, this would always be the stable solution for 

material with negative magnetoelastic constants. For material with positive 

magnetoelastic constants, this solution becomes unstable at a nucleation 

field of Hnuc = - 2be/Ms . The subsequent behavior is then given by the 
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second equilibrium solution. The predicted magnetization curve is 

1 for He > 2be 
-~ 

M 
M = < 

s Ms 2be 
- 2be He for He < -M

s 

(3.9) 

where M/Ms = cose and b = bl for the <100> problem or b = b2 for 

the <111> problem. The curves are shown in Figure 3.5. 

3.2. Domain Theoretical Calculation (POlycrystal) 

This development will proceed by considering the equivalent shock 

induced anisotropy effect in theoretically dense isotropic cubic polycrystal­

line ferromagnetic material. This will be accomplished from knowledge of the 

single crystal magnetic properties. Also, this should be a better approxima­

tion than the single crystal analysis of the preceding section to the magnetic 

behavior of commercial and natural material subject to this effect. 

The prediction of a polycrystalline material property from its equi­

valent single crystal property is a problem confronted in many areas of 

physics. The approach, quite similar in every case, requires an averaging of 

the single crystal property for an arbitrarily oriented crystallite over all 

crystal orientations. 34 The complicating factor is that an arbitrary crystal­

lite interacts, not only with the external forces, but also with other grains 

in the polycrystal. This grain-grain interaction can be mechanical (through 

stresses), electrical, or magnetic. In most cases, this complicated interac­

tion is not known. 

Examples are elastic constants, dielectric constants, magnetostriction 

constants, and conductivities. In each case basic assumptions concerning the 

grain-grain interaction must be defined before progress can be made. For 

• 
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instance, in the case of elastic constants,35 two assumptions have been used. 

One assumption is that uniform strain36 exists throughout the crystal. The 

other is that uniform stress 37 prevails. Experiment favors neither, usually 

being closer to an arithmetic average of the results of the two assumptions. 

The same assumptions are made in obtaining po1ycrysta1line magnetostriction 

constants. 38 ,39,40,4l In this case experiment favors the assumption of uni­

form stress. 

In the present problem, the state of strain be~ind a plane shock wave 

in a theoretically dense cubic polycrysta1 is assumed to be uniform. (See 

Appendix V.) The speculation involves the magnetic grain-grain interaction. 

This is a complicated many body interaction of current interest 42,43 about 

which little is known. In analogy to the previous examples, this development 

will define the extreme assumptions regarding the grain-grain interaction and 

then consider each individually. 

One extreme is that material crystallites interact with sufficient 

strength to cause a cooperative, colinear alignment of the grains · magnetiza-

tion vectors. The other extreme is that grain-grain interactions are 

negligible and that each grain individually seeks equilibrium determined by 

the requirements of the anisotropy field and external magnetic field. These 

assumptions will be called the interacting grain assumption and the independ­

ent grain assumption, respectively. 

3.2.1. Interacting Grain Assumption 

The interacting grain assumption will be considered first. This 

assumption was made by Royce7,8 during pioneering work on the shock induced 

anisotropy effect and leads to a mathematically tractable averaging process. 

Domain structure in a polycrystalline ferromagnet is usually on an 

intra-grain sca1e. 44 This is due to high crystal anisotropy energy and large 
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angle grain boundaries which make continuous domains across grain boundaries 

energetically unfavorable. There are cases, however, such as in material 

subject to cold working, in which a high degree of crystal orientation allows 

an extra-grain domain structure. 4 In the present effect, the easy direction 

of magnetization is determined not only by the crystallographic axis but also 

by the direction of uniaxial strain. Thus, the effect of the shock wave is to 

create a condition of magnetic texture defined by the direction of uniaxial 

strain behind the shock wave. It would not be implausible to expect an extra­

grain domain structure to nucleate after passage of the shock wave. 

A further argument for this assumption follows by considering a spheri­

cal grain interior to a domain of uniform magnetization. The magnetization in 

this grain could deviate from this direction of uniform magnetization only by 

creating surface poles on the grain boundary. The energy associated with this 

is 

t = - 4; M~ cose. 

In YIG, at typical shock stresses, this energy is of the same order as the 

strain induced anisotropy energy. Hence, there will be strong torques 

attempting to maintain uniform magnetization throughout the domain. 

The following assumption simplifies the averaging process and creates 

a neat form for the magnetoelastic energy of a polycrystal. It is assumed 
++ 

that M.He is uniform throughout the field. 

To proceed with the averaging process, the six dependent variables, 

a l , a 2, a3, nl , n2, and n3, appearing in the energy expression will be ex­

pressed in terms of four independent angular variables as shown in Figure 

3.4. 34 ,45 The direction cosines are related to the angular variables by 
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<Xl = sin).cosB, <X2 = sin).sinB, <X3 = cos)., 

n1 = cos~sin).coss + sin~(cos).cos8cosl/J + sinssinl/J), 

n2 = cos~sin).sins + sin~(cos).sinscosl/J - cosssinl/J), 

and 

n3 = cos~cos). - sin~sin)'cosl/J. 

Since the po1ycrysta1 is isotropic, 

~ sin). d).dSdl/J 
8n 

is the probability that the magnetization lies in the range). to ). + d). 

and S to S + dS while the strain is in a range l/J to l/J + dl/J. The aver-

age values of various terms appearing in the energy expression are obtained 

from 

z 

~----------------------+-~-y - -- - - ---------1 
x 

Fig. 3.4.--Independent angular coordi­
nates for representing anisotropy energy. 
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1T 27r 21T J J J f(~, A, S, 1jJ) sinAdAdsdljJ. 1 = 
87r2 

o 0 0 

Various averages will be required and are tabulated in Table 1. 

TABLE l.--Average values of various terms appearing 
in the energy expression 

f(~, A, S, ljJ) 

2 2 2 2 2 2 ala2 + a2a3 + a3al 
2 2 2 2 2 2 alnl + a2n2 + a3n3 

al a2nl n2 + a2a3n2n3 + a3al n3nl 
2 4 2 4 2 4 alnl + a2n2 + a3n3 
222 

ala2nl n2n3 + a2a3n2n3nl + a3aln3nln2 

222 222 222 a1a2n3 + a2a3n1 + a3a1n2 

1 
5 

1 + .£ cos2~ 
5 5 
1 3 2 - TO + TO cos ~ 

3 12 2 
35 + 35 cos ~ 

132 
- 70 + 70 cos ~ 

322 
35 - 35 cos ~ 

From this table, the average value of the anisotropy energy from con­

ventional magnetoe1astic theory, Equation (3.1), can immediately be written 

down. It is 

(3.10) 

where 

The crystal anisotropy energy averages to a constant and does not contribute 

r 
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to the effect. The total energy expression for a ferromagnetic polycrystal, 

assuming interacting grains, takes the simple form 

(3.11) 

as in the single crystal cases with b replaced by B, since e and ~ 

are complementary angles. Thus, thermodynamic equilibrium predicts a linear 

equilibrium magnetization curve for the interacting grain assumption, 

1 , He 
2Be > -~ 

M 
Ms 

= 
Ms 

He 
2Be 

- 2Be He' < 
-~ 

(3.12) 

intermediate between the extremes defined by the <100> problem and the 

<111> problem in the equivalent single crystal behavior. 

3.2.2. Independent Grain Assumption 

It is quite possible that the uniform magnetization field demanded by 

the previous assumption does not occur. The isolated single particle critical 

size within which a single domain exists for YIG is less than 1 micron. This 

size will increase for a bounded crystallite due to a substantial decrease in 

surface poles at the grain boundary, but not by more than an order of magni­

tude. 42 Also, the single crystal domain width predicted previously, Equation 

(3.8), was approximately 20 microns. The grain size of the material used in 

the present work ranged from 5 to 25 microns. This suggests that perhaps an 

intra-grain domain structure would nucleate in order to reduce magnetic poles 

which would otherwise collect heavily along grain boundaries. 42 ,44 This is 

usually the case for unstrained material and may possibly occur in the mate-

rial behind the shock front. If an intra-grain domain structure occurred. 
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there would not be a prevailing magnetic field as was considered in the inter­

acting grain assumption. In this case it would be more likely that each grain 

would distribute about some average depending on the orientation of its crys­

tallographic axis with the external fields. 

A simple consideration will show that, if independent grain conditions 

obtain, then the average magnetoelastic energy previously obtained in the 

interacting grain assumption is too high. The energy from the interacting 

grain assumption contained not only a part necessary to bring individual mag­

netic grains to their independent equilibrium positions, but also a part 

required to bring these magnetic grains into colinear alignment. Too large an 

induced anisotropy energy would then predict too much demagnetization. 

The independent grain assumption is that ·each crystallite seeks equi­

librium subject only to the requirements of the induced anisotropy field and 

the external magnetic field and independent of the behavior of neighboring 

crystallites. A rigorous approach to the averaging procedure would be to 

express the magnetization direction in the anisotropy energy expression, Equa­

tion (3.1), in terms of polar coordinates e and ~. The total energyex­

pression should then be minimized with respect to e and ~ for an arbi­

trarily oriented crystallite. The resulting magnetization projection along 

the direction of the applied field should then be averaged over all crystal 

orientations. This problem, which has been encountered previously in another 

context, cannot be solved explicitly for e and ~ and has not been com­

pleted. 40 

An alternate approach, in the spirit of calculations made by Lee,46 

is to write the average normalized magnetization, 

I 



COS8 = 

40 

JF(Q) cos8dQ 

J F(Q) dQ 
(3.13) 

in terms of an unknown distribution function of the magnetization vector 

directions throughout the solid angle. A first harmonic assumption for the 

distribution function is that F(Q) is uniform throughout the solid angle 

defined by the extreme angles from the <100> problem and the <111> problem. 

These were 

COS8 1 and 

F(Q) is zero otherwise. This first harmonic approximation gives for the 

average value 

COS8 = 

82 J COS8S i n8d8 
81 
82 J sin8d8 

81 

= 

where x = COS8. A problem occurs when COS8 l is unity at which point the 

first grains reach saturation. To freeze the upper limit of integration arti­

ficially constrains the distribution function. This problem can be circum­

vented by allowing the upper limit to continue but demanding that the 

respective contribution to cos8 be unity. This gives 
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Ix dx 

x2 for xl < , r dx 

x2 
cose = , , 

x dx + I J dx 

X2 ' for x, > l. r dx 

X2 

Performing the integration gives 

for x, < , 

cose = ~ 

, 2 
t<x2 - 2x, + 1) 

for x, > l. x2 - x, -

This wi" be expressed in the final form by 

, 
for n,He 

, 2(n, + n2)He < -
M 

Ms 
= , 

, 2 2 ) 
t<n2He - 2n,He + , 

for n,He > l. 
(n2 - nl)He 

-

(3.'4) 

... 

where 

and (3.15) 

The solution is M/Ms = , above the magnetic field for which n2He = ,. 

-I 
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The predicted magnetization curve is linear until nlHe = 1. (See 

Figure 3.5.) In this region it has the same form as obtained in the inter­

acting grain theory, 

except B is given by the arithmetic mean, 

1 = 1(_1 + _1 ) 
B 2 bl b2 • 

The subsequent magnetization curve joins continuously to first and second 

order but approaches saturation more slowly than the interacting grain magnet-

ization curve. 

In the case of magnetoelastic isotropy (b1 = b2), the independent 

grain theory degenerates to the predicted curve for the interacting grain 

theory. The predicted magnetization curves for the two assumptions along with 

those for the <100> and <111> problems are shown in Figure 3.5 for YIG. 

3.3. Micromagnetic Theory 

The intention in this section is to review briefly the concepts of 

micromagnetic theory and its progress concerning the shock induced anisotropy 

effect. The theory proceeds by invoking the thermodynamic equilibrium postu­

late on the total integral energy expression, Equation (2.15).31,47 The 

resulting variation, accomplished by calculus of variation techniques, yields 

Brown's equations which, along with the corresponding magnetostatic boundary 

value problem, constitute a system of nonlinear differential equations for the 

magnetization field throughout the material parameterized on the external 

applied field He. 
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Since this system of equations is nonlinear, for a given He many 

solutions are allowed. Some of these solutions will be stable while others 

will be unstable. Each stable solution represents a possible physical state 

of the thermodynamic system. Which state is occupied depends on the history 

as well as existing conditions. Hence, this theory is capable of predicting 

magnetic hysteresis. With variation of the applied field He' the present 

state of the system may change continuously or by finite jumps if the state 

becomes unstable. These jumps are known as Barkhausen jumps and have been 

observed experimentally. 

Progress by this very elegant approach has been limited due to the 

extreme complexity of the system of nonlinear equations. Some success has 

been made in select regions of the magnetization curve for very special geo­

metries of magnetic materia1. 3l ,47 

Independent grain 

1.0 

0.5 Interacting grain 

O.OL-______ ~ ________ ~ __ ~~~ ____ __ 
o 40 80 120 

He/e (koe) 

Fig. 3.5.--Magnetization curves for various theories~ 
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The only progress through micromagnetic theory on the shock induced 

anisotropy effect has been made by Bartel. ll He used an alternative approach, 

known as the Rayleigh-Ritz method, which circumvents direct use of Brown's 

equations. This method assumes a form for the final solution with a sufficient 

number of undetermined parameters. The total energy integral is then 

minimized with respect to these parameters. 

His development assumed a uniform anisotropy field as would occur in 

single crystals for specific orientations or as would occur in polycrystals 

under the interacting grain assumption. By approximating the argument of the 

energy integral expression and by considering first harmonics in the assumed 

Rayleigh-Ritz solution and corresponding magnetostatic potential, he was able 

to draw conclusions about domain size, nucleation field, and subsequent devia­

tion from magnetic saturation. 

3.4. Porosity Effect 

Previous observations suggest that the major structural defects 

capable of significantly altering the results obtained in earlier sections are 

nonmagnetic inclusions in the form of voids or impurities. 12 Porosity is 

characteristic of magnetic ceramics. Even the best hot pressing techniques 

are capable of producing garnets only to about 98% or 99% theoretical den­

sity while in ferrites 95% is a good number. This is probably characteris-

tic of natural materials also. 

Experiments by Wayne et al. 12 show that polycrystalline magnetic 

ceramics, when subject to hydrostatic pressure, show a strong dependence of 

magnetization on pressure. Their interpretation was that nonhydrostatic 

strains occuring in the vicinity of cavities created local magnetic anisotropy 

fields which produced local deviations in the magnetization and, hence, the 
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observed effect. It has been suggested that this same effect might occur to 

some extent in the present shock induced anisotropy situation. 

A calculation which relates the magnetization to the hydrostatic pres­

sure and the porosity in the approach to saturation region of the magnetic 

material has been made. 48 This calculation is based on the assumption that 

the average behavior of an aggregate of cavities in the medium can be repre­

sented by the behavior of a spherical pore in an isotropic elastic continuum. 

The strain around a spherical pore in an isotropic elastic medium subject to 

external hydrostatic pressure deviates from hydrostatic strain. This devia­

tion contributes to the anisotropy energy. The energy density at a distance 

r from the center of a pore of radius a has been calculated to be 

(3.16) 

where the first term is the induced anisotropy energy and the second is the 

interaction energy. e is the angle between the field point and the applied 

magnetic field. ~ is the angle between the magnetization at the field point 

and the applied magnetic field. ~ is the shear modulus and 

Equation (3 .16) is derived in Appendix IV. By numerical methods, this expres­

sion leads to a prediction of the dependence of magnetization on P and He' 

Figure 3.6 shows this magnetic dependence on He for 3% porous YIG at two 

values of hydrostatic pressure. 

The intention of this section is to make a simple estimate of the 

effect of porosity on the shock induced anisotropy effect for slightly porous 

material. In particular, 3% porous YIG will be considered since this mate­

rial was utilized in these studies. It will be assumed that the correction to 



the predicted magnetization due to porosity is small and can be superposed on 

the actual strain induced anisotropy results. This correction will be obtained 

from the previously discussed numerical hydrostatic prediction by using, in­

stead of the hydrostatic pressure, the mean pressure 

This correction cannot be added directly but must be weighted since the full 

correction is realized only when the material is initially in magnetic satura-

tion. In fact, when the strain induced anisotropy predicts 

M 7T = 
Ms 4" ' 

the correction will be zero since this is exactly the average value of cos~ 

1.00 - -

':£.Vl .95 
....... 
':£. 

~44KB 

.90~------~--------~------~-------

0.0 0.5 1.0 

He (koe) 

1.5 

Fig. 3.6.--Magnetic hydrostatic pressure depend­
ence of 3% porous yttrium iron garnet. 
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distributed around a spherical pore. Thus, the magnetization will be 

~s = f(e,He) + w(M/Ms)~(P,He) 

where f(e,He} is the strain induced anisotropy prediction (Equation (3.12) 

for the interacting grain theory and Equation (3.14) for the independent grain 

theory), ~(P,He) is the full numerical porosity correction, and W{M/Ms ) is 

the weight factor. The correction is assumed to be small so a linear approxi­

mation of w(M/Ms ) will be used. Since 

and 
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/ 
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/ 
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w(l} = 1 
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1 

80 
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I 
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Fig. 3.7.--Correction to independent grain 
assumption due to 3% porosity. 



48 

one obtains 

M = 
MS 

(3.17) 

The correction is shown in Figure 3.7 for the independent grain assumption. 

This correction is seen to be negligible in the higher regions of the magneti-

zation curve and obtains significance only in the l ower part of the curve 

where the applied field is substantially lower. It is important to notice 

that for large strains the effect of porosity on the magnetization curve 

becomes quite significant. This is believed, by Royce, to explain the shock 

demagnetization results of Shaner and ROyce8 in the plastic region of YIG. 

Shock pressures of 90 to 440 kbars were obtained in that work. 



CHAPTER IV 

EXPERIMENTAL METHOD 

An experimental design should reproduce as closely as possible the 

requirements of the theoretical model. These requirements are an infinite 

slab of ferromagnetic material in a state of uniaxial strain normal to the 

plane of the slab and an applied magnetic field in the plane of the slab. 

Experimentally, the infinite slab of ferromagnetic material was approximated 

by a rectangular slab of yttrium iron garnet, YIG. The state of uniaxial 

strain was obtained by planar impact of a projectile from a four inch gas gun. 

The magnetic field was applied by a pulsed current through a rectangular sole-

noid enveloping the specimen. A schematic representation of the experimental 

procedure is illustrated in Figure 4.1. This wil l hopefully aid in corre­

lating details with the overall experimental design. 

Briefly, the experimental sequence is as follows. A projectile trav-
+ 

e1ing at a velocity v triggers a current supply. The subsequent current 

produces a magnetic field which reaches a maximum at the time the projectile 

impacts the target. The impact produces a strain wave which propagates 

through the solenoid and into the YIG sample. This sample, initially in mag­

netic saturation, is demagnetized by the strain wave. The demagnetization 

develops an emf across the pickup coil which is recorded on the monitoring 

oscilloscopes. The magnetic equation of state of the ferromagnetic material 

behind the shock front is determined from these records. 

49 
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4.1. Application of Magnetic Field 

The objective is to create a magnetic field by driving a large current 

pulse through a rectangular solenoid coincident in time with the application 

of the strain field. Referring to Figure 4.2, the operation is as follows. A 

large electrolytic capacitor, C, is charged to a predetermined voltage, Eo' 

At a predetermined time prior to application of the strain field the silicon 

control rectifier is triggered. Capacitor C then discharges via high volt­

age cables through the solenoid at a rate determined by the L, R, and C 

of the circuit. A current pulse of the form 

is obtained where 

and 

R a = 2[ 

= (~ __ 1 )1/2 
w 4L2 LC . 

Preadjustment of to' R. and L allows a predetermined current Imax to be 

attained at a predetermined time 'm governed by 

This time is adjusted so that the shock wave passes through the specimen when 

I = Imax' The transit time is approximately 0.25 ~s. The current is 

essentially steady during this time. The time variation in the neighborhood 

of 'm is 
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For the chosen components, this fluctuation is about 0.01% for the required 

recording time. 

The inductor L is an integral part of the experimental design. It 

is, of course, a major component in determining the rise time of the current 

pulse. More important, the inertia of the inductor maintains the current and, 

therefore, the applied magnetic field constant for the duration of the experi­

ment. There are several effects which attempt to change the current. First, 

passage of a shock wave across the solenoid accelerates the forward face 

creating an effective solenoid collapse. Electromotive forces are generated 

in an attempt to produce currents which would conserve the flux in the closing 

solenoid area and thus increase the magnetic field. Second, when the stress 

wave transverses the magnetic sample, a gross flux reduction occurs. The 

response of the electric circuit is to attempt to compensate for this flux 

change. In both cases, it is the responsibility of the inductor L to main­

tain the current constant, denying the natural response of the system. About 

0.25 to 0.5 millihenry inductors have been found sufficient for this pur­

pose. It should be mentioned that this inductor is physically located within 

a few inches of the solenoid since its inertial characteristics must be real­

ized within nanoseconds. To locate this inductor in the current supply would 

create coaxial cable reflections and nullify its stabilizing property. 

There is a 1,000n resistor paralleling the solenoid to ground. This 

resistor carries several percent of the total current and, with the solenoid, 

has an L/R time sufficient to damp out ringing due to the finite stray 

capacitance of the solenoid windings. 49 

The current through the solenoid is monitored by recording the voltage 

across a precision 1Q resistor in series with the solenoid as shown in 

Figure 4.2. The magnetic field is given by the solenoid formula 
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( 4.1) 

where I in amperes and N in turns per centimeter gives the magnetic field 

in oersteds. 

The solenoid is constructed of 1 by 15 mil (1 mil = .001 inches) 

OFHC copper ribbon obtained from The Wilkenson Co. 50 Usually between 12 and 

20 turns per centimeter were used. The solenoid constituted about 6 to 90 

of D.C. resistance, a factor which must be considered in the total circuit 

design. A standard lathe, set in the thread cutting mode, was found to pro­

vide an efficient and versatile means for winding a very smooth and regular 

solenoid. Magnetic fields required for this work required currents up to 60 

amperes. The joule heating during pulsing was still substantially less than 

the softening temperature of epoxy; approximately 80°C. 

A problem of concern is the ripple in the magnetic field due to the 

finite spacing of the solenoid windings. The magnitude is estimated by the 

following method. In the neighborhood of the grid, the magnetic vector poten-

tial is periodic and can be written as a superposition of terms, 

-+ -+ 2 A = A (y) cos n~x 
n n a ' 

where y is the normal direction from the grid, x is along the grid, and a 

is the period of the grid. The vector potential must satisfy Laplace's equa-

tion. Hence, 

4 2 2 -+ 
n ~ A (y) = 0, 
a2 n 

which has the solution 



55 

The first harmonic is reduced by lie in a distance 

while higher harmonics falloff even faster. Therefore, ripple in the magnetic 

field is less than 1% at a distance from the grid equal to the period of the 

grid. In this case, it is about 20 to 30 mil. 

Another problem is the end effect or reduction in the magnetic field 

due to the finite length of the solenoid. For a rectangular solenoid of dimen-

s ions band c wi th c» b, the end effect error is 

HI - He 1 1 1 = - - - tan- ~ 
HI 2 'IT b' (4.2) 

where He is the actual field, HI is the infinite solenoid field, and x 

is the distance into the solenoid from the end. The solenoid must be con-

structed sufficiently long to nullify this error in the region of the specimen. 

4.2. Application of Strain Field 

The strain field required in the magnetic sample was produced by 
51 planar impact of a projectile accelerated in a four inch gas gun. The 

sample, solenoid, and required electronics are assembled in a target which is 

mounted at the muzzle end of the gas gun. This in turn, is enclosed in an 

evacuated target chamber. Impact tiles are characteristically on the order of 

10-4 radians. 

4.2.1. Experimental Construction 

The normal metal faces of the projectiles were replaced by nonconduct-

ing material, usually Lucite or a ceramic such as aluminum oxide, in order to 

eliminate moving metal from the vicinity of the solenoid and, hence, reduce 

gross movement of magnetic flux during the experiment. The velocity of the 
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projectile is measured by contact pins prior to its arrival at the target face. 

This is required for determining the final state of strain in the YIG. The 

velocity contact pins also serve to trigger the current supply. 

The target is constructed so that the plane wave propagates through 

the solenoid and then into the YIG. See Figure 4.3. Materials through which 

the wave travels between projectile and YIG are, in order, 0.75 millimeters 

of Lucite, 0.025 millimeters of alternate copper and epoxy, 0.75 millimeters 

of Lucite, and 0.025 millimeters of epoxy which includes the front face of 

the pickup coil. All electronic components are mounted behind the solenoid 

assembly and are completely potted in epoxy. 

There are several problems associated with propagating a planar shock 

wave through the periodic grid defined by the front surface of the solenoid. 

LUCilE =-----
~ 

COPPER-EPOXY 

~ VIG 
---. 

. 1 

1 2 3 4 

mm 

Fig. 4.3.--So1enoid construction. 
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First, the copper-epoxy interface is a region of mechanical impedance mismatch 

through which the wave must travel. The resulting ringup in this region 

degrades the wave and lends a finite rise time to an initial step stress wave. 

A volume average density for the grid region predicts approximately a 50 nano­

second risetime for the stress profile. Quartz gauge records have verified 

this prediction. Second, the periodicity of the grid creates a corrugated 

wave effect due to the differing velocities and impedances in the grid mate­

rials. This effect will diminish with propagation distance from the grid due 

to Huygen's principle and due to nonlinearity and viscosity of the Lucite. 

Mineev et al. 52 have shown that in metals at high pressures the perturbation 

amplitude (in this case several times the grid thickness) drops to a small 

amount in less than several times the period of the grid. It has been assumed 

that this problem does not significantly affect the experimental results. 

A technique capable of virtually eliminating the problems associated 

with the solenoid grid was invented while this work was in progress. The 

method requires simply replacing the first region of Lucite in Figure 4.3 with 

an aluminum oxide ceramic. The stress wave then propagates through aluminum 

oxide, the copper-epoxy grid, and Lucite, respectively. The material charac­

teristics which make this technique successful are the mechanical impedance 

similarities of aluminum oxide and copper on one hand and Lucite and epoxy on 

the other along with the similar shock velocities of copper and epoxy. This 

peculiar combination of properties essentially creates a single interface of 

a somewhat ragged nature. An experiment was performed in which two quartz 

gauges analyzed waveforms propagating through identical geometries with the 

exception that one contained a copper-epoxy grid while the other did not. 

The waveforms were identical. A similar set of circumstances exists at the 

interface containing the pickup coil. This explains why no deteriorating 

effects are observed due to it. 
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4.2.2. Equation of State 

The state of strain in the YIG was obtained in two ways. First, by 

use of measured projectile velocities, calculations through the intermediate 

materials into the YIG were made. Second, quartz gauge techniques were used.53 

In each case, equation of state information for the various materials involved 

was required. 

A linear elastic equation of state was assumed for the YIG. This in­

formation has been collected, along with other required physical properties of 

YIG, in Table 2. 

An aluminum oxide ceramic, Wesgo 995,54 was used as a projectile face 

material. It was assumed to be linear elastic. The equation of state param­

eters used were55 

D = 1.03 cm/ps, 

Vo = 0.2615 cc/g, 
(4.3) 

and 

Z = 3.939 mB(cm/ps)-l. 

The Lucite used was Rohm and Haas, Type G. The material, obtained in 

30 mil sheets, had a specific volume of 0.847 cc/g. A cubic P - u rela-

tion, 

P = 0.336u + 1.12u2 + 5.11u3, (4.4) 

was fit by the method of least squares to data by Liddiard56 and Barker and 

Hollenbach57 in the region of 0 to 60 kilobars. The units are megabars, 

centimeters, and microseconds. 

The stress wave at the Lucite-YIG interface undergoes a reflection 

with a jump in stress. To calculate this final stress state requires 
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knowledge of the recentered Hugoniot in the Lucite. To obtain this recentered 

Hugoniot, a Mie-Gruneisen equation of state was assumed in the Lucite. 58 When 

referenced from the foot of the initial Hugoniot, this takes the form 

v 
= f (E - E(So'Vo)) + P(So'V) + f J P(So'V) dV. 

Vo 

Collecting the volume-dependent-only terms into an arbitrary function gives 

P(V,E) = f (E - E(So'Vo)) + f(V). (4 .5) 

The energy jump condition on the initial Hugoniot is 

Equation (4.5) must hold in particular on the initial Hugoniot. Therefore, by 

eliminating the energy expression between Equation (4.5) and Equation (4.6), 

one obtains 

Solving this for f(V) and substituting back into Equation (4.5) gives the 

required Mie-Gruneisen equation of state, 

The energy jump condition on the recentered Hugoniot is 

E - EI = ~ (PH - PI)(VI - V), 
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where pi = P~(VI) and (PI,VI) represent the reference state for the 

recentered Hugoniot. When combined with the energy jump condition on the ini­

tial Hugoniot, this gives 

Combining this with the Mie-Gr~neisen equation of stat~ gives the required 

pressure on the recentered Hugoniot. 

(1 - .:1.) V o (4.7) 

To facilitate the calculation, a quadratic P - n relation, n = 

1 - VIVo, was fit to the initial Hugoniot data in the range 10 to 60 kilo­

bars. The result, 

(4.8) 

was not forced through the origin. This allowed a better fit to the data in 

the region of interest. The quantity r/V was assumed constant. The value 

of ro is difficult to assess from the literature. Acoustical data59 give 

ro = 5.13 while thermodynamic data60 predict ro approximately equal to 

0.9. A gross linear fit to 0 - u data, using the re1ation61 

yields a value of ro ~ 0.8. 

dO 
ro = 2 du - 1, 

For this work, strains using a value of r = o 

1.0 are quoted. In practice, pressures of about 22 ki10bars and 44 ki10-

bars were obtained in the Lucite. Predictions of strain for To = 5.13 

are 1% and 4% lower, respectively. 
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4.3. Demagnetization Measurement 

The reduction in magnetization is measured by recording the flux 

change in a pickup coil surrounding the sample of yttrium iron garnet. This 

pickup coil consists of 10 turns of 1 mil by 15 mil manganin ribbon wound 

intimately around the specimen as shown in Figure 4.3. The active recording 

region, defined by the face of the pickup coil, is about 1 cm2. Manganin 

ribbon was originally chosen because of its distributed resistance. It was 

thought that this resistance might tend to dampen parasitic oscillations in 

the pickup circuitry. No attempt has been made to test the merit of this pre­

caution. The pressure dependence of the resistance is negligible for this 

experimental configuration. A twisted pair of 3 mil, insulated copper wires 

are solder-connected to the pickup coil immediately behind the YIG sample and 

brought out the end of the solenoid. This twisted pair and their connections 

are not disturbed by the stress wave during the recording time. 

A high impedance recording circuit is used to monitor the emf developed 

across the pickup coil during the demagnetization process. The equivalent 

circuit, shown in Figure 4.4, consists of an ideal source of emf and a resis­

tance R consisting of the load resistance plus the internal resistance of 

Fig. 4.4.--Pickup coil circuit. 



62 

the pickup coil. The signal is transmitted to the recording oscilloscope by 

50n coaxial cable and terminated there in 50n. The emf is given by 

£ (t) = (R ~ Z) V(t) (4.9) 

where V(t) is the voltage recorded at the monitoring oscilloscope and Z is 

the characteristic impedance of the coaxial cable. The resistance R is 

selected to maintain the current flow in the pickup circuit sufficiently small 

such that the magnetic field produced by this current is negligible compared 

to the magnetic field produced by the solenoid. In practice, several hundred 

ohms are found to be sufficient for this purpose. The dynamic impedance of 

the pickup coil inductance is small compared to this resistance. 

To relate the demagnetization to the emf developed, it will be 

assumed that a steady state shock profile is progressing through the magnetic 

material as shown in Figure 4.5. In the spirit of mechanical jump condition 

calculations,58 consider, prior to passage of the shock wave, an element of 

area bOot which is compressed to b(O - u)ot after passage of the shock 

wave. b is the width of the pickup coil and D is the velocity of the shock 

profile. The change in magnetic flux across the shock wave is 

o~ = b(B(D - u) - BoD)ot 

where Bo is the initial magnetic induction and B is the final magnetic 

induction. Considering the case where the external applied field is constant 

and using 

B = He + 4'1fM 

along with the jump condition, 

(D - u)p = OPo' 
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one obtains 

where Mo is the initial magnetization per unit initial volume and M ;s the 

final magnetization per unit final volume. Since 

and Mpo/p is the final magnetization per unit initial volume, the rate of 

flux change becomes 

d~ _ 
dt - 4nbOoM - buHe· (4.10) 

The first term is the change in flux due to the reduction in magnetization. 

The second term is the flux change due to motion of the front surface of the 

f 
b 

-- .--(0 - u)ot ---. Dot 

Fig. 4.5.--Geometry for magnetic flux jump con­
dition. Area compression due to shock propagating into 
medium at rest is represented. Magnetic ffe1d is normal 
to the page. 

I 
, 
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pickup coil in the manner of a magnetic velocity gauge. When the latter can 

be neglected, 

(4.11) 

Faraday I slaw 

(4.12) 

relates the induced emf in volts to the turns in the pickup coil and the flux 

in gauss-cm2-sec-1. From this, one finally obtains 

108 R + Z 
= 4~bND Z v. (4.13) 

Thus, for a steady state shock wave, the induced emf is constant and is pro­

portional to the demagnetization. 

4.4. Material 

The material selected for this study was hot pressed polycrystalline 

yttrium iron garnet. 62 It was chosen because the magnetoe1astic properties 

are of convenient magnitude for experimental investigation. This was also the 

same material used by Shaner and Royce8 in earlier investigation of the shock 

induced demagnetization effect at higher stresses. The following paragraphs 

will present the material characterization performed during this work. 

Photomicrographs were obtained of polished sample surfaces. A uniform 

distribution of highly spherical pores, characteristic of sintered ceramics, 

was observed. The pore diameters ranged from 1 to 3 microns. There was 

some evidence of other inclusions. 
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TABLE 2.--Material properties of single crystal yttrium iron garnet 

Property 

Second order elastic 
moduli 

First order magneto­
elastic constants 

Second order magneto­
elastic constants 

Crystal anisotropy 
constant 

Saturation magneti­
zation at T = 293°K 

Ne'el temperature 

Pressure dependence 
of Ne'el temperature 

Temperature dependence 
of saturation magneti­
zation at T = 293°K 

Source 

a 

b 

b 

c 

e 

d 

d 

e 

Values 

cll = 2.69 x 1012 dyn/cm2 

c12 = 1.08 x 1012 dyn/cm2 

c44 = 0.76 x 1012 dyn/cm2 

bl = 3.5 x 106 erg/cm3 

b2 = 6.9 x 106 erg/em3 

Blll = 173 ~ 12 x 106 erg/cm3 

B123 = 22 ~ 19 x 106 erg/cm3 

B144 = - 5 ~ 41 x 106 erg/cm3 

B155 = -37 ~ 5 x 106 erg/cm3 

B441 = -24 ~ 14 x 106 erg/cm3 

B456 = -27 ~ 7 x 106 erg/cm
3 

Kl = -6.2 x 103 erg/cm3 

M = 133.7 gauss s 

T = 563°K N 

aTN/ap = 1.25°K kbar- l 



Property 

Theoretical density 

Lattice constant 

Longitudinal velo­
city (polycrystalline) 

Coefficient of 
expansion 

Isothermal 
compressibility 

Specific heat 
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TABLE 2--Continued 

Source Values 

f 

f ao = 12.38 ~ 

. g o = 7.17 mm/lls 

f 

g 
-4 -1 KT = 6.1 x 10 kbar 

h Cv = 0.162 cal/gm deg 

a T. B. Bateman, J. Appl. Phys. 37,2194 (1966). 

bO. E. Eastman, Phys. Rev. 148, 530 (1966) and references 
contained therein. ----

cHandbook of Microwave Ferrite Materials, W. H. vonAulack, 
Ed . (Academic Press Inc., New York, 1965), and references contained 
therein. 

do. Bloch, F. Chaisse, and R. Pauthenet, J. Appl. Phys. 37, 
1401 (1966). 

eEstimated from Pauthenet, Ann. de Phys. 1, 425 (1958). 

fS. Geller and M. A. Gilleo, J. Phys. Chern. Solids 1, 30 (1957). 

gAo E. Clark and R. E. Strakna, J. Appl. Phys. 32,1172 (1961). 

hCalculated from Oulong and Petit limit. 
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Photomicrographs were made of fracture surfaces. The average grain 

size was found to be approximately 15 microns with a distribution of from 5 

to 25 microns. The grain distribution was homogeneous throughout the sample. 

The grain distribution appeared visually isotropic; that is there was no evi­

dence of mechanical texture created by the hot pressing process. The pores 

were observed to occur both intragranu1ar1y and at grain boundaries. 

The porosity of the material was obtained by measuring and weighing 

rectangular samples, by liquid displacement, and by analysis of photomicro­

graphs. The porosity obtained was 3.3 + 0.5% where the theoretical density 

from Table 2 was used. 

A spectrographic analysis for metallic impurities was performed. The 

results are shown in Table 3. Tests for organic inclusions or oxygen im­

purities were not made. 

TABLE 3.--Spectrographic analysis for 
metallic impurities 

Element Percent 

Fe Principle constituent 
y Principle constituent 
Ca .05 
Si .01 
A1 .01 
Ni .01 
Cr .01 
Mg .005 
Ag .003 

Mn .002 
Cu .0005 
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The samples were received as rectangular slabs of dimensions 0.1 x 

1.0 x 5.0 cm. The specimens were lapped flat and parallel with #1700 alumi­

num oxide lapping compound. 

The saturation magnetization of the material was determined by magnet­

izing several samples from zero magnetization to some value determined by the 

final magnetic intensity. This was performed by initially demagnetizing the 

specimen and then pulsing a current through the solenoid enveloping the speci­

men. The data provided a linear plot which was fit to the Weiss relation,63 

(4.14) 

Ms and a were obtained from the intercept and the slope. The saturation 

magnetization obtained was about 124 gauss. The theoretical value (see 

Table 2), reduced by the amount expected due to the porosity of the material, 

is 128 gauss. The latter value was used due to the author's lack of confi­

dence in the somewhat painfully obtained first value. 

The magnetoelastic constants bl and b2 were not measured. The 

constants used (see Table 2) were most probably values obtained from the 

1 i tera ture . 

4.5. Experimental Corrections 

This section will address various experimental perturbations and con-

siderations which will affect, to some degree, the ideal measurement 

presupposed. The first few problems are related to the experimental design; 

others concern material behavior. 

Since the rectangular specimen is of finite length, there will be an 

additional contribution to the magnetic field created by the magnetic poles 

at the end faces. An exact calculation of this field would be v·ery difficult. 
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However, an approximate value can be obtained by considering the specimen end 

faces as point magnetic poles of charge, 

Q = + MA, m 

where M is the magnetization and A is the area. From this, one obtains a 

demagnetizing field 

H - 8A M d;::: 2' 
a 

where a is the length of the sample. This can be written 

where 

Hd = -OM, 

o = 8A 
a2 

is the demagnetizing factor for this geometry. The maximum value for this 

field is about 5 oe which is approximately 2.5% of the lowest applied 

fields used. 

In section 4.1, it was reported that the principle purpose of the 

large inductor was to maintain the current constant during the shock induced 

demagnetization process. Arbitrarily large L cannot be used since this 

would require a correspondingly large current supply to drive it. A suffi­

cient value for this inductor can be obtained from the following consideration . 

The current fluctuation, 61, produced by the shock induced emf, £ I, devel­

oped ~cross the solenoid can be obtained from 

L ft 61 + 6IR = £ I 

with the initial condition 
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lli (0) = (ll . 

The shock induced emf, (' I, is on the order of 

where N is the number of turns in the solenoid. This has the solution 

111 = (~ t for l 
t « R . 

Thus, if • is the shock wave transit time, it will be sufficient to maintain 

111 = ('I. 
L 

small compared to the initial current in the solenoid. In practice, 250 to 

500 ~h have been found to be adequate. It should be .noted that this effect 

tends to increase the field and is in opposition to the demagnetizing field 

effect. 

Passage of the stress wave across the front face of the pickup coil 

accelerates this face creating an effective magnetic velocity gauge. Its mo­

tion produces an emf which is superimposed on the emf produced by demagneti­

zation. This emf is given by 

-8 
(' II = 10 NbuHe , (4.15) 

where u is the velocity, b is the width of the pickup coil, and N is the 

number of turns in the pickup coil. The emf of interest, Equation (4.13), is 

The fractional ratio of the two is 
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uHe 
= D(41Tl5M) , 

which is not negligible at the lower oM values and must be corrected for. 

It is assumed that prior to entrance of the shock wave the material is 

in a state of magnetic saturation. This is not, in fact, the case for a given 

applied field H. The actual magnetization can be roughly obtained from the 

Weiss relation, 

For this material a value of a = 3.6 + .5 oe was obtained. This correc-

tion reaches a magnitude of 2% for the lowest magnetic fields used. 

Experimentally the measured value of oM will be less than that pre­

dicted by Equation (3.12) and Equation (3.14) for the theoretically dense 

material. This is due to the porosity of the material. This correction is 

not concerned with the effect of porosity on the strain field. It is simply 

that void regions are nonmagnetic and are not contributing to the effect. 

This is the same correction which reduces the saturation magnetization, Ms ' 

from the theoretical value. To be accurate, one should distinguish between 

the expressions for the theoretically dense material (M~h, oMth) and the 

porous material (M~or, oMPor). Then the theoretical prediction of oMth/M~h 

can be related to the measured value of oMPor/MPor through s 

This distinction has not been made in the text but is implicit wherever 

experiment and theory are compared. 

(4.16) 
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As has been previously mentioned in Chapter II, the correction due to 

finite strain could be substantial since the shock induced strains obtained in 

this work are three orders 'of magnitude larger than strains which occur in 

magnetostrictive processes. This is considered exhaustively in Appendix III. 

Becker-Doring terms, as were derived in Chapter II, are terms in the 

magnetoelastic energy expression which are quartic in the direction cosines of 

the magnetization vector. These terms are seldom found to be of Significance. 

Good values do not exist for YIG. The Becker-Doring terms can probably be 

safely ignored and this has been done in the present work. 

The saturation magnetization is temperature dependent and will be sub­

ject to change by the adiabatic shock compression. The isentropic temperature 

change, 

aV T 
LlT = ~ 0 ~P, 

P 

is calculated to be about 2.5°K and 5°K for shock strengths of 20 kbar 

and 40 kbar, respectively. The saturation magnetization temperature depend­

ence from Table 2, 

1 aM _ s 
Ms aT/TN = -0.61, 

predicts changes of -0.25% and -0.5%, respectively, for Ms. 

The exchange interaction and hence the saturation magnetization also 

depends on pressure. Assuming a law of corresponding states,12 

MS(T)/MS(O) = f(T/TN), 

taking a pressure derivative, and using values from Table 2, one can obtain 
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1 aMs 3 1 - -- = o. 76 x 10- kba r - . 
Ms aP 

This is a correction of +1.5% and +3% for 20 kbar and 40 kbar, respec­

tively. The correction is of the opposite sign from the temperature correc-

tion. 

It has been observed that the magnetoelastic constants are function-

ally related to the saturation magnetization under a temperature variation. 

For instance, in nickel As is proportional to M~.46 This is probably true 

for pressure variations. Since the material property relating the magnetiza­

tion to He/e is a quotient of the saturation magnetization and a magneto­

elastic constant, the error produced by temperature and pressure effects will 

be even smaller than predicted in the previous paragraphs. 



CHAPTER V 

ANALYSIS OF EXPERIMENTAL DATA 

The analysis used for a systematic reduction of the experimental data 

is considered in this chapter. Determination of the applied magnetic field is 

discussed first. Next is the calculation required to estimate the state of 

strain in the magnetic sample from the directly measured mechanical parameters. 

Following this is the technique used to consistently determine the state of 

magnetization in the shocked ferromagnet from the actual induced emf oscillo­

scope records. Lastly, the experimental data resulting from this work are 

presented. 

5.1. Magnetic Field 

As was discussed in Section 4.1, tne magnetic field is determined by 

monitoring the voltage drop across a In, 1%, 5 watt resistor. This resis­

tor, being in series with the solenoid, realizes the same current which is 

obtained from the voltage record through the relation 

I = V{~ + t). (5.1) 

Z is the characteristic impedance of the monitoring cable and R ;s the In 

resistor. The applied field ;s ;n turn obtained from 

He = O.4nNI. 

These two equations provided the recorded values for the magnetic field. The 

corrections due to demagnetizing and finite inductance effects were not made. 
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They were canceli,ng corrections and at best 2% corrections individually. 

Cons ideration of errors incurred by meas.uri,ng Rand N a 1 o,n9 with the 
, , , 

associated voltage and caHbration records gave an rms error in determining 

5.2. Uniaxial 'Strain Field 

The primary method used to calculate the state of strain in the YIG 

was througn equation of state knowledge of the intermediate materials and 

measured projectile velocities. The necessary equations of state were pre­

sented in Section 4.2.2. The experimental procedure required creation of the 

same state of strain over a series of shots. The ability to do this relied on 

the reproducibility of the projectile velocity. It was found that the projec­

tile velocity was constant within 1% over a series of shots. In this analy­

sis, the average projectile velocity was assumed for the entire series. 

Calculation of the state of strain in the YIG proceeds as follows. 

Upon impact of the projectile, the initial state (Pi, u l
, and nil behind the 

initial shock in the Lucite is obtained from requirements of continuous pi 

and u' across the projectile-Lucite interface. Simultaneous solution of tne 

projectile P - u relation and the Lucite P - u relation (Equation (4.4)) 

gives pi and u' . Equation (4.8) can then be solved for , 
n . This. is the 

reference state for the recentered Hugoniot which is used to obtain the state 

behind the shock reflected from the YIG-Lucite interface. The state of strain 

in the YIG requires simultaneous solution of the system of equations 

(5.2) 
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(5.3) 

and 

(5.4) 

which relate mechanical parameters when the shock wave, initially in the 

Lucite, traverses the Lucite-YIG interface. This is a system of three equa­

tions in three unknowns; P, u, and n. The first is Equation (4.7) with 

the pressure on the Hugoniot recentered about pi and n l in the Lucite. 

The second is obtained from mass and momentum jump conditions across the 

reflected shock in the Lucite. The third is an elastic P - u relation for 

YIG. The system of three equations was solved numerically by a Newton-Raphson 

iteration technique for the required mechanical parameters. 

A technique devised to serve as a consistency check on the numerical 

methods and equations of state used was to substitute a quartz gauge for the 

YIG. To be consistent, the actual recorded stress should agree with that cal­

culated through the previous numerical procedure. This was found to be the 

case within +4% over several shots. The variation was not consistently 

above or below. 

Also observed on the quartz gauge records was the deterioration in the 

stress profile due to propagation through the 1 mil copper-epoxy grid. The 

effect on the profile was to create a finite rise time of approximately 50 

nanoseconds. After the quartz gauge profiles were corrected for finite 

strain,53 there still existed a slight ramp of less than 2% across the 

recording time of the quartz. Although this may be due to incorrect compensa­

tion for finite strain, it may also be the effect of dissipation in propagating 

the stress wave through 1.5 mm of Lucite as has been observed by Barker and 
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Hollenbach. 57 This possible effect was ignored. It would be slight in any 

case as can be seen from the profiles published by Barker and Hollenbach. 

In summary, the projectile velocity for a series of shots was assumed 

to be the average obtained from these shots. The state of strain in the YIG 

was obtained with this projectile velocity and the calculation described in 

this section. This calculation of the strain should be accurate to +5%. 

5.3. Transverse Magnetization 

The last experimental parameter required is the magnetization corres­

ponding to a given magnetic field and shock induced anisotropy field. This is 

obtained by measuring the reduction in magnetization, oM, assuming that 

prior to arrival of the shock wave the material is in a state of magnetic 

saturation. The magnetization is then 

M = M + oM s 

where M is negative. oM is obtained through 

(5.5) 

as discussed in Section 4.3 where it was assumed that f was constant, pro­

duced by a steady state shock wave progressing through the magnetic medium. 

A typical oscilloscope record from which this magnetic information 

must be deduced is shown in Figure 5.1. A negative emf is developed during 

the first transit of the wave corresponding to the expected demagnetization of 

the magnetic material. The subsequent behavior is determined by alternate re­

magnetization and demagnetization as the stress wave reverberates back and 

forth in the magnetic material. A fairly accurate acoustic velocity in YIG 

can be determined from these records. Only the first half cycle is utilized 

in analysis of the magnetic state behind the shock. 
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The analysis in Section 4.3 assumed that a steady state shock existed 

in the material. Thus, if a square shock enters the medium one would ideally 

expect the recorded emf to be a square pulse and the analysis would be trivial. 

This behavior is not the case. Consequently, the factors which complicate 

this behavior must be addressed. 

The first problem is due to the finite rise of the stress profile 

brought about by its transit through the solenoid face. The expected emf can 

by shown to be of the form in Figure 5.2(a). This can be seen most easily by 

considering an incremental application of Equation (4.13). There will be a 

finite rise to the demagnetization approaching a constant value when the wave 

is completely in the medium. 

The second effect is due to relief waves generated at the lateral 

limits of the magnetic material. The slabs of YIG used in this work had an 

aspect ratio of 10 to 1. A first approximation calculation can be made by 

assuming the relief behavior shown in Figure 5.3. If the longitudinal strain 

in the unaffected material is e, then the equivalent strain in an element of 

the relieved material is 

e' = 2(}l + A) 
2u + A e, 

r 
~ ... 

f (.'\ 

'I ~ 

'""" 
.... 

Fig.5.1.--0scillo­
scope record of shot no. 
70-039. 0.2 US per division. 

(5. 6 ) 
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obtained from consideration of static displacement in the two dimensional elas­

tic problem. A and ~ are the Lame constants. The emf produced by the 

demagnetization corresponding to a given state of strain is 

ignoring the relief problem. By considering this approximation to the relief 

problem, the induced emf becomes 

t = 4nlO-8ND((b - 2Dt)oM(e) + 2DtoM(e'» 

or, after reorganizing, the expression becomes 

(5.7) 

This equation predicts that the lateral stretching due to relief waves pro­

duces a linear increase in emf over that predicted for the infinite slab. The 

expected behavior is shown in Figure 5.2(b). 

time 

(a) (b) (c) 

Fig. 5.2.--Effect on the demagnetization profi1e due to 
(a) finite rise time of strain wave, (b) lateral relief waves, 
and (c) combined effect. 
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The total behavior due to the superposition of the effects of finite 

rise and relief waves would be as shown in Figure 5.2{c). This expectation 

has been supported by the experimental profiles obtained. See Figure 5.5. 

From these records a consistent means of obtaining the magnetization in the 

shocked, unrelieved material must be determined. A logical method would be to 

extrapolate the linear slope in Figure 5.2{c) back to zero time and accept 

this value of [ as that required in Equation (5.5). Unfortunately, this ;s 

difficult to do consistently. This is especially true for the lower demagnet­

ization shots where the signal to noise ratio was sufficiently low enough to 

frustrate a quantitative analysis of this kind. 

The following is a description of the method used to analyze the 

experimental demagnetization data. Although less satisfying than that pro-

posed in the last paragraph, this method yields a consistent and conservative 

description of the measurements. On every record there are distinct and well 

defined upper and lower bounds to the emf required in Equation (5.5) as shown 

in Figure 5.4. (min is determined when approximately 70% of the full 

stress profile initially enters the medium. The 70% is obtained from a re­

verberation Hugoniot analysis at the solenoid grid. [max incorporates the 

tel 
I 

---
£ rG 

- Dt--

b .. 
Fig. 5.3.--First approximation geometry of lateral 

relief wave behavior. 





82 

in 0.25 microsecond increments. The vertical coordinate is the actual emf 

developed across the pickup coil. In Figure 5.6, the experimental magnetiza­

tion curves are presented along with the theoretical curves for the interacting 

grain and independent grain assumptions. The two series of shots correspond 

to approximately one-third and two-thirds of the Hugoniot elastic limit in 

YIG. This has been reported as 64 kbars lO (attributed to R. A. Graham). In 

Figure 5.7, the data are plotted as a function of the normalized field He/e 

against which the predicted magnetization curves for any induced anisotropy 

field are self similar. The vertical error bars are determined by the experi-

mental extremes as discussed in Section 5.3. The horizontal error bars are 

+6% which is the rms error for He and e. 



TABLE 4.--Experimental results 

Projectile Projectile Mean Magnetic Induceda Specimen 
oM/Msb 'lot no. velocity strain field emf width 

(nvn/~s) 
materi al in YIG (oe) (volts) (cm) 

)-016 0.598 359 20.5 1.060 0.332+.066 -

)-030c 0.602 245 ---- 1.063 0.602+.100 -

)-039 0.600 Plexiglass 258 62.4 1.067 0.515+.033 
ROHM 

)-053 0.601 and -0.0083 588 11.2 1.075 0.089+.034 -HASS 
1-057 0.596 Type-G 494 21.6 1.085 0.173+.037 -

1-059 0.598 680 4.6 1.081 0.039+.015 -

-002 0.597 421 30.3 1.023 0.260+.055 -

-013 0.598 787 2.5 1.081 0.018+.010 -

-015 0.551 Aluminum 660 48.5 1.068 0.400+.030 -oxide -0.0162 
-016 0.555 WESGO-995 935 20.5 1.032 0.173+.038 -

aThis emf was developed across 10 turn pickup coils with the exception of shot no. 70-016 which 
ed a 5 turn pickup coil. The values were obtained through Equation (5.8). 

bCalculated with an Ms of 128 gauss. See Section 4.4. 

cOn this shot, the solenoid was prematurely shorted. These values were obtained by estimating 
e field due to residual current and knowledge of the circuit inductances and resistances. 
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CHAPTER VI 

DISCUSSION AND CONCLUSIONS 

6.1. Discussion 

The use of equilibrium thermodynamics to describe the behavior of the 

shocked ferromagnetic material assumes that equilibrium is reached within a 

few nanoseconds after passage of the shock wave. Magnetic relaxation times 

observed by other methods suggest that this very likely occurs. However, the 

results of the present work lend additional confidence to this assumption. 

Within the concepts of domain theory, an analysis of the shock induced 

anisotropy effect on magnetic single crystals has established the following. 

The equilibrium exchange and dipolar energy increases as the fourth root of 

the strain while the magnetoe1astic anisotropy energy increases linearly with 

the strain. This means that the contribution of the exchange and dipolar ener­

gy to the magnetic behavior is significant at low strains but becomes negligi­

ble in the high elastic and plastic region. It was deduced that domain walls 

in the direction of strain with normals either perpendicular or parallel to 

the applied field differed only slightly in wall energy. This small energy 

difference is probably nullified by local crystal defects. However, domain 

walls normal to the axis of strain incur high energy due to the magnetic vol­

ume poles created. It is logical to conclude that a needle or sliver shaped 

domain structure oriented in the direction of uniaxial strain nucleates behind 

the shock wave. The magnetization curves predicted for the <100> and <111> 

problems are linear and differ substantially. This is a consequence of the 

magnetoe1astic anisotropy of YIG (b1 1 b2). 
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In con~idering the s.b.ock induced anisotrop.>-' effect on m,agnetic poly-
, , , 

crystals, a critical analysis of the necessary aver,aging procedure is required. 

This analysis is concerned with the magnetic interaction between crystal 

grains. A definition of extreme assumptions concerning the interaction was 

made in analogy with the procedure used to determine polycrystalline elastic 

constants. 

From one extreme, the interacting grain theory follows. The physics 

necessary to make this behavior plausible requires an extra-grain domain 

structure. This in turn demands sufficient contribution from exchange and di­

polar forces to make continuous domains across grain boundaries energetically 

favorable. 

Independent grain theory is the other extreme. This behavior is 

expected if an intra-grain domain structure occurs. Such domain structure 

arises when exchange and dipolar forces are insufficient to overcome aniso­

tropy forces. 

In the present work, experimental data concerning the shock induced 

anisotropy effect have been obtained for polycrystalline yttrium iron garnet 

in the region of large elastic strain. The results, presented in Figure 5.6 

and Figure 5.7, support the shock induced anisotropy mechanism as a contribu­

tion to shock demagnetization. It is further concluded that the independent 

grain assumption provides a better description of the magnetic behavior of 

ferromagnetic material in the shocked state. Also established is the validity 

of the parameter He/e in characterizing the magnetization curve. This is 

seen in Figure 5.7 where the experimental magnetization curves, plotted as a 

function of this parameter, are self similar. 

In retrospect, independent grain behavior appears more logical than 

interacting, grain behavior. Domain theory predicts that the equilibrium 
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exchange and di.polar ene.rgy will be n.eg1.igible compared to the remaining ener .. 

gy terms. It follows that domain walls wi.ll be extremely cheap and an inter­

grain domain structure will occur. Considering this, one expects independent 

grain behavior. Conversely, experimental confirmation of the independent 

grain theory indirectly supports the validity of the domain theoretical calcu­

lation which predicts the strain dependence of the equilibrium exchange and 

dipolar energy. 

From the domain theoretical calculation, it was concluded that a sliver 

or needle shaped domain structure nucleates behind the shock front. This 

domain structure is an effect rather than a cause since it provides negligible 

contribution to the shape of the magnetization curve of the shock created fer­

romagnetic material in the region of large elastic and plastic strain. 

It begins to appear that the prediction of magnetic behavior behind 

the shock front is much simpler than the equivalent prediction in unstrained 

material. First, the equilibrium exchange and dipolar energy can be ignored 

in favor of the much simpler induced anisotropy energy. This is definitely 

not the case in unstrained material. Secondly, in polycrystalline material it 

appears that the magnetic grain-grain interaction effects are not substantial 

and magnetic properties can be obtained by simply averaging the behavior of a 

single independent grain. 

From this, one might speculate on the magnetic response of natural or 

meteoritic material subject to similar shock loading. Here one is confronted 

with many additional complications. Chemical and compositional gradients a­

long with coexistence of nonmagnetic and magnetic phases produce variations in 

the saturation magnetization, exchange integral, and magnetoelastic properties. 

It would be extremely complicated to construct an adequate energy expression 

to describe this material. However, from the results of the work described 
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here, one WQuld expect the magnetic response of a local ~e9ion to depend only 

on the induced anisotropy in that ~e9ion and be independent of long range 

interaction with ne.ighboring material. Consequently, the macroscopic magnetic 

behavior should be predictable from a similar aver.age over the chemical and 

compositional structure of the material. 

The effect of porosity, as discussed in Section 3.4, is not expected 

to contribute significantly in the region of the magnetization curve where the 

experimental data was obtained. The present experimental results confirm this. 

The porosity effect is expected to become substantial in the lower region of 

the magnetization curve. 

A consistent treatment of the contribution of finite strain to the 

shock induced anisotropy effect is carried out in Appendix III with the ther­

modynamics developed in Chapter II. This is required by the high strains con­

sidered in this work. Calculations show that the contribution is not substan­

tial. The experimental data verify this conclusion. It follows that, at 

least for the present material, the conventional magnetoelastic theory of 

Becker and Doring provides an adequate description of the shock induced ani­

sotropy effect. 

The experimental technique developed for this work provides a simple 

means of measuring the state of magnetization in shocked material. The funda­

mental difficulties, discussed thoroughly in Section 5.3, are degradation of 

the shock profile when passing the solenoid grid and lateral rarefaction waves. 

The first problem can be circumvented by a proper choice of solenoid material 

at the grid interface as was experimentally established in Section 4.2.1. The 

second problem could be minimized by better design of the pickup coil-specimen 

geometry. It is believed that this technique could be useful in more general 

investigation of the magnetostructural properties of materials. 
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6.2. SUnlnary 

The conclusions reached and results obtained during the course of the 

present work are as follows: 

1. Equilibrium thermodynamics provides an adequate description of 
the shock induced anisotropy effect . 

2. Established concepts of domain theory predict that the equilibrium 
exchange and dipolar energy is proportional to the fourth root of 
the strain and is negligible in the high elastic and plastic shock 
region. 

3. A needle or sliver shaped domain structure oriented in the direc­
tion of shock propagation is expected to nucleate behind the 
shock front. 

4. Consideration of the shock induced anisotropy effect in magnetic 
polycrystals revealed the importance of magnetic grain-grain 
interaction. Assumptions of interactin9 grains and independent 
grains were defined to describe the possible extremes of this 
i nteracti on. 

5. Data on polycrystalline yttrium iron garnet were o~tained in the 
region of large elastic strain. The results support the inde­
pendent grain theory as more representative of actual behavior. 

6. The experimental results indirectly support the domain theoreti­
cal analysis. 

7. The effect of porosity has been shown, by analysis and experiment, 
to be small in the region of the magnetization curve considered. 

8. Conventional magnetoelastic theory provides a sufficient charac­
terization of the shock induced anisotropy effect for strains up 
to at least two-thirds the elastic limit. 

9. An experimental technique capable of magnetit measurements on the 
shocked material has been designed, implemented, and analyzed. 
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APPENDIX I 

TABLE OF THERMODYNAMIC AND ENERGY EXPRESSIONS 

TABLE 5.--Thermodynamic and energy expressions 

Expression Note 

Total magnetic work 

oW • 4! J fi. is dV 

oW • Jfi.iMdV+oJ:~dV+ 

Follows directly from 
Maxwell's equations. 

First term is stored as local 
energy or dissipated in 
irreversible processes. 
Second term is stored as self 
energy. Also called demagnet­
izing or dipolar energy. 
Third term is stored as energy 
in the external field. 

Magnetic work on material only 

oW • Jfi.iM dV + oJ:~ dV 

oW • J fi. oM dV - t 0 J M. Hd dV 

oW • J H.oM dV 

96 

Work on external field is not 
considered. 

The second term is an alter­
native form for self energy. 

Follows from magnetostatic 
theorems (p. 8) or directly 
from Faraday's law. 

II 



w 

oE 

E 

E 

E 

E 
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TABLE 5--Continued 

Expression 

Energy 

f~ ~ < ToS + He·oM dV -

f~ ~ < ToS - M.oHe dV -

f~ ~ = U - He·M dV = U + 

frH dV 

= frH dV + frd dV + frLOC dV 

= frH dV + frd dV + frex dV 

+ frA dV 

= frH dV + frd dV + frex dV 

+ frK dV + frme dV 

Note 

Combined first and second law 
of thermodynamics. 

+ 
S and He are independent 
variables for this energy 
expression. 

Legendre transformed energy 
expression. Second term in 
either expression is inter­
action energy in external 
field. 

Internal energy separates 
into local energy and long 
range self energy. 

Local energy separates into 
exchange energy and ani­
sotropy energy. 

Anisotropy energy separates 
into crystalline energy and 
magnetoelastic energy. 



Chapters 

APPENDIX II 

LIST OF SYMBOLS 

II and III 
+ + + 
H = magnetic field intensity = He + Hd 

+ 
He = external field 
+ 
Hd = demagnetizing field 
+ 
M = magnetization = magnetic moment/volume 

+ + 
MS = saturation magnetization = Ms<l 

+ 
<l = (<l1' <l2' <l3) = direction cosines 

referred to crystal 

S = entropy 

T = temperature 

U = total energy 

axes 

E = total Legendre transformed energy 

t = specific energy corresponding to E 

tH = interaction energy 

td = demagnetization energy 

rex = exchange energy 

(K = crystal anisotropy energy 

(me = magnetoe1astic energy 

of magnetization 

= total anisotropy ene.rgy = (K + [me 

= local energy = tK + ( + ( me ex 
x. = Eulerian coordinates 

1 

98 
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ai = Lagrangian coordinates 

ax;laaj = deforma.tion gradients 

Eo. = finite strain 
lJ 

eij = infinitesimal strain 

e = extension = pip - 1 

p = density 

/ = symbol for shock wave 

!C = symbol for rarefaction wave 

Kl = crystal anisotropy constant 

bl , b2 = first order magnetoelastic constants 

B = average of first order magnetoelastic constants 

Blll ' etc. = second order magnetoelastic constants 

Ow = domain wall energy/area 

0 = domain width 

L = ferromagnetic slab thickness 

A = exchange constant 

F(~) = distribution function of magnetization vectors 

nl ' n2 = -Ms/2bl e, -Ms/2b2e 

ox' 0y = stress components 

p = hydrostatic pressure 

p = mean pressure 

II = shear modulus 

Chapters IV and V 

I = current 

£0 = initial voltage on capacitor 

C = capacitance 

L = inductance 
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pi, VI, 

100 

N = solenoid turns/em or number of turns in pickup coi l 
+ 
A = magnetic vector potential 

D = shock or longitudinal velocity or demagnetizing factor 

V = specific volume or oscilloscope voltage 

Z = mechanical impedance = poD or transmission line 

impedance 

P = longitudinal stress 

u = particle velocity 

E = energy 

s = entropy 

r = GrUneisen constant 

P~(V) = initial Hugoniot 

n = 1 - V/V 
0 

E 1 , 
1 = thermodynamic state on initial Hugoniot n 

f (t) = emf developed across pickup coils 

b = width of pickup coil 

4> = magnetic flux 

oM = shock induced change in magnetization 

(I = shock induced emf across solenoid 

(" = emf due to magnetic velocity gauge effect 

[max' (min = defined by maximum and minimum in demagnetization profile 
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APPENDIX III 

FINITE STRAIN EFFECT 

The work in Chapters III, IV, and V assumed the conventional magneto­

elastic theory of Becker and Doring. It has been shown by BrownS that this 

theory, which assumes infinitesimal strain from the start, is inconsistent 

in small orders of strain. This inconsistency is normally of no consequence 

in magnetostrictive processes due to the extremely small strains involved 

(the order of 10-5). In the present effect, strains of 10-2 or larger are 

realized. For this reason, it is necessary that the effect of finite strain 

be considered. 

111.1. The Finite Strain Tensor 

In the spirit of Thurston,27 the deformation gradient for uniaxial 

strain colinear with the unit vector n is 

where 

ax. 
1 = en.n. + 0 .. aa. 1 J 1 J 
J 

Po 
e = - - 1 

P 

(IILl) 

is the extension in the direction of uniaxial strain, the xi are the 

Eulerian or spacial coordinates, and the aj are the Lagrangian or material 

coordinates. From the Lagrangian definition of finite strain, 

101 
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one obtains the finite uniaxial strain tensor 

111.2. Finite Strain Correction to Interacting 
Grain Theory 

(111.2) 

It was shown in Section 3.2 that crystal anisotropy energy does not 

contribute in the first order to the shock induced anisotropy effect under 

conventional magnetoelastic theory. This does not follow from finite strain 

theory. From Equation (2.13), 

(111.3) 

where 

* 
aXj 

a i = aa. aj 
1 

= (enin j + o .. )a .. (I1I.4) 
lJ J 

Substituting into Equation (111.3) gives terms, to first order in e, of the 

form 

The other terms follow by permuting indices. Collecting terms, using . . 

• 
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222 
~l + ~2 + ~3 = 1, 

and then averaging with Table 1 gives 

Since Kl is usually two to three times smaller than the magnetoelastic con­

stants, this contribution to the shock induced anisotropy effect can be 

ignored. 

In obtaining the magnetoelastic energy correct to second order in the 

extension, both the first and second order magnetoelastic expressions in 

Equation (2.13) must be considered. This point has the same origin as the 

inconsistency first noticed by Brown. The second order correction to the 

first order magnetoelastic energy will be considered first. This energy 

expression is 

With Equation (111.2) and Equation (111.4), this becomes 

+ 2e2(nln2~1~2 + n2n3~2~3 + n3nl~3~1) 

2 2 2 2 ] - 2e (nln2n3~2~3 + n2n3nl~3~1 + n3nln2~1~2) 

+ 2b2 [(e + ~2) ("'"2"'"2 + "2"3"2"3 + "3"'"3"') 
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2 2 2 2 + e (n,n2n3a2a3 + n2n3n,a3a, + n3n,n2a,a2) 

222 22 22 242 42 421 + e (n,a, + n2a2 + n3a3) - e (n,a, + n2a2 + n3a3~ 

3 + a(e ) + .•. 

Averaging this expression with the aid of Table' gives 

for the first order magnetoe'astic energy correct to secOnd order in e. 

Note that in the case of isotropy 

The second order magnetoe'astic energy is 

(' (2) = 
me 

'0 (~2 *2 E2 *2 2 *2) ~l" ~lla, + 22a2 + E33a3 

+ B'23(E"E22aj2 + E22E33a;2 + E33E"a22
} 

In this expression, it is correct to second order in e to rep' ace Eij by 

e., and a~ by a
J
,. This gives 

lJ J 

• 

• 
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((2) = 
me 

Averaging this expression with the aid of Table 1 and neglecting a function 

of strain only gives the second order magnetoelastic energy correct to second 

order in e. 

The total average magnetoelastic energy consistent with the inter­

acting grain theory correct to second order in e is 

111.3. Finite Strain Correction to Independent 
Grain Theory 

(III.5) 

The independent grain theory requires solutions of the <100> prob­

lem and the <111> problem from finite strain theory. For uniaxial strain 
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along a <100> direction, the magnetoelastic energy reduces to 

Using 

and 

one obtains 

2 
Ell = e + ~ 

*2 2 2 al = (1 + 2e)al + s(e ) + ... , 

correct to second order in e. 

(111.6) 

(111.7) 

(II1.8) 

The solution of the <111> problem is somewhat more difficult. One 

method is to rotate the first and second order magnetoelastic tensors (fourth 

and sixth rank tensors, respectively) to a coordinate system coincident with 

the <111> crystal axes. In this system, 

where 

«111> = 
me 

• 
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, 248 4 8 
= 9 B", + 9 B'23 + 9 B'44 + 9 B'55 + 9 B441 + 9 B456 

and 

are obtained from the tensor transformation. Using Equation (111.6), Equation 

( II 1. 7), and 

one obtains the energy expression 

(II1.9) 

With Equation (111.8) and Equation (111.9), one obtains the expressions for 

n1 and n2 in Equation (3.14) and hence the independent grain magnetization 

curve. The finite strain correction in either theory was not found to be 

substantial . 
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APPENDIX IV 

MAGNETOELASTIC ENERGY ABOUT A SPHERICAL PORE 

In this appendix, the magnetoelastic energy density about a spherical 

pore in an isotropic elastic magnetic medium subject to hydrostatic pressure 

will be derived. Figure IV.l should be referred to for symbols. 

It is first necessary to find the strain field about a pore subject 

to a limiting boundary condition of hydrostatic strain. This is accomplished 

by finding the displacement field. The displacement field, because of 

symmetry, is of the form 

Fig. IV.l.--Spherical cavity of radius 
a. Ms cos~ is the magnetization in the direc­
tion of the applied field at the spherical 
coordinate (r,e,~). There is azimuthal 
symmetry. 
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The radial displacement must satisfy Laplace's equation. In spherical coor­

dinates, this becomes 

This has the solution 

ur = Ar + B2 • 
r 

The limiting boundary condition (r + m) is that the strain be hydrostatic. 

r=<» 

where KT is the isothermal compressibility. The boundary condition at 

r = a is that the normal stress be zero. 

where E is Young's modulus and v is Poisson's ratio. This boundary con-

diti on becomes 

= 

r = a r = a 

The radial displacement field satisfyirg the boundary conditions is 

• 
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where ~ is the shear modulus. The strain components, obtained from the 

appropriate derivatives of the displacement field, are 

KrP P a3 
err = --+--

3 2~ r3 ' 

eee = KrP P a3 
- -3- - 4~ r3 , 

and 

KrP P a3 
= - -3- - 4~ r3 . 

The deviatoric strain, e1 j , is obtained by subtracting the hydrostatic 

strain. This is the only part that contributes to the magnetoelastic energy. 

In local Cartesian coordinates, the deviatoric strain tensor is 

Using this expression for the strain in the magnetoelastic energy, 

and using th.e average values in Table 1 where 

x.x. 
--Y-= 

r 
n. n., 

1 J 
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one obtains 

• 

where 

This is the magnetoe1astic energy in Equation (3.16). 

--
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APPENDIX V 

DEVIATION FROM UNIFORM STRAIN 

In Chapter III, the assumption was made that a polycrystalline mate-

rial subject to macroscopic uniaxial strain realizes microscopic uniform 

strain, where macroscopic and microscopic are relative to the grain size. 

This is not strictly true. In individual crystallites deviation from uniform 

strain can be expected. The purpose of this appendix is to obtain a measure 

of this deviation from uniform strain in cubic polycrystalline material. 

If a polycrystalline material is subject to macroscopic uniaxial 

strain and further constrained to uniform strain in each crystallite, then 

the associated elastic energy is 

where 

(V.l) 

is the longitudinal modulus obtained from the Voigt assumption. 36 

(V.2) 

and 

(V.3) 

are the bulk modulus and shear modulus in terms of the elastic stiffness coef-

ficients. 
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If a polycrystalline material is subject to macroscopic uniaxial 

strain but constrained locally to uniform stress, then the elastic energy is 

where 

(V.4 ) 

is the longitudinal modulus obtained from the Ruess assumption. 37 

(V.5) 

and 

LV.6) 

are the bulk modulus and shear modulus in terms of the elastic stiffness and 

compliance coefficients. 

In the actual case, the elastic energy is 

1 2 E = "2 me 

where m is some unknown longitudinal modulus. It has been proved that64 

Experiment has shown that m is very close to the arithmetic average of the 

Voigt and Ruess approximations;35 

m :: (V.7) 

Since 

• 
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is the energy stored for uniform uniaxial strain and 

1 2 E = 2" me 

is the actual energy stored, the difference, 

1 2 oE = 2" (mV - m)e , 

is the energy stored in random strain. For simplicity, an upper bound for 

this random strain energy can be obtained by replacing m with mR. Call 

this upper bound 8[. An upper bound for the ratio of random strain energy 

to uniform uniaxial strain energy is 

From Equation (V.l) through Equation (V.6), this is approximately 

(V.8) 

where 

S = 

is a measure of the isotropy of the material. (This is exact for K and ~ 

replaced by KV and ~V but the difference is negligible.) 

Since the energy is proportional to the square of the strain, an 

upper bound measure of the ratio of the random strain to the uniform strain 

is 
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e(random) 
e(uniform) 

For YIG, ~ = 0.78 x 1012 dynes/cm2, K 

5 = 0.95. This gives 

- 1/2 
(5 - 1)2 

(1 + ~ 5)( 1 + ~ 51 
. -

= 1.62 x 1012 dynes/cm2, 

e(random) 
e(unifonn) 

= 0.0015. 

(V.9) 

and 

Copper is an example of a highly anisotropic cubic material. ~ = 

0.436 x 102 dynes/cm2, K = 1.33 dynes/cm2, and 5 = 3.2. For copper, 

e(random) 
e(uniform) 

= 0.28. 

It was stated that this was an upper bound. A better estimate can be 

made by using Equation (V.7) in the analysis. The result differs from Equa­

tion (V.g) by a factor of 1/12. This gives a strain ratio in copper of 0.20. 

This calculation shows that the assumption of uniform strain in YIG 

is quite good. However, for highly anisotropic material the deviation from 

uniform strain can be quite appreciable. 

• 
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